Solomon Asghar, Qing-Xiang Pei, Giorgio Volpe, Ran Ni
{"title":"Efficient rare event sampling with unsupervised normalizing flows","authors":"Solomon Asghar, Qing-Xiang Pei, Giorgio Volpe, Ran Ni","doi":"10.1038/s42256-024-00918-3","DOIUrl":null,"url":null,"abstract":"<p>From physics and biology to seismology and economics, the behaviour of countless systems is determined by impactful yet unlikely transitions between metastable states known as rare events, the study of which is essential for understanding and controlling the properties of these systems. Classical computational methods to sample rare events remain prohibitively inefficient and are bottlenecks for enhanced samplers that require prior data. Here we introduce a physics-informed machine learning framework, normalizing Flow enhanced Rare Event Sampler (FlowRES), which uses unsupervised normalizing flow neural networks to enhance Monte Carlo sampling of rare events by generating high-quality non-local Monte Carlo proposals. We validated FlowRES by sampling the transition path ensembles of equilibrium and non-equilibrium systems of Brownian particles, exploring increasingly complex potentials. Beyond eliminating the requirements for prior data, FlowRES features key advantages over established samplers: no collective variables need to be defined, efficiency remains constant even as events become increasingly rare and systems with multiple routes between states can be straightforwardly simulated.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"251 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00918-3","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
From physics and biology to seismology and economics, the behaviour of countless systems is determined by impactful yet unlikely transitions between metastable states known as rare events, the study of which is essential for understanding and controlling the properties of these systems. Classical computational methods to sample rare events remain prohibitively inefficient and are bottlenecks for enhanced samplers that require prior data. Here we introduce a physics-informed machine learning framework, normalizing Flow enhanced Rare Event Sampler (FlowRES), which uses unsupervised normalizing flow neural networks to enhance Monte Carlo sampling of rare events by generating high-quality non-local Monte Carlo proposals. We validated FlowRES by sampling the transition path ensembles of equilibrium and non-equilibrium systems of Brownian particles, exploring increasingly complex potentials. Beyond eliminating the requirements for prior data, FlowRES features key advantages over established samplers: no collective variables need to be defined, efficiency remains constant even as events become increasingly rare and systems with multiple routes between states can be straightforwardly simulated.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.