考虑装卸作业,优化 U 型自动化集装箱码头的多设备调度

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-05-29 DOI:10.1111/mice.13275
Xiang Zhang, Ziyan Hong, Haoning Xi, Jingwen Li
{"title":"考虑装卸作业,优化 U 型自动化集装箱码头的多设备调度","authors":"Xiang Zhang, Ziyan Hong, Haoning Xi, Jingwen Li","doi":"10.1111/mice.13275","DOIUrl":null,"url":null,"abstract":"U‐shaped automated container terminals (ACTs) represent a strategic design in port infrastructure that facilitates simultaneous loading and unloading operations. This paper addresses the challenges of scheduling multiple types of equipment, such as dual trolley quay cranes (DTQCs), automated guided vehicles (AGVs), double cantilever rail cranes (DCRCs), and external trucks (ETs) in U‐shaped ACTs. This paper proposes a mixed integer linear programming model for optimizing the multiple equipment scheduling, aiming to minimize container completion time and AGV waiting time simultaneously. This paper customizes a hybrid genetic‐cuckoo optimization algorithm (HGCOA) with double‐point crossover and Lévy flight Cuckoo search strategies. Extensive numerical results show that the proposed HGCOA outperforms the benchmark genetic algorithms in terms of solution quality and computational time while significantly improving efficiency without substantial sacrifices in solution quality compared with the exact solution method. Overall, this study presents a promising solution for enhancing coordination and operation efficiency in U‐shaped ACTs","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing multiple equipment scheduling for U‐shaped automated container terminals considering loading and unloading operations\",\"authors\":\"Xiang Zhang, Ziyan Hong, Haoning Xi, Jingwen Li\",\"doi\":\"10.1111/mice.13275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"U‐shaped automated container terminals (ACTs) represent a strategic design in port infrastructure that facilitates simultaneous loading and unloading operations. This paper addresses the challenges of scheduling multiple types of equipment, such as dual trolley quay cranes (DTQCs), automated guided vehicles (AGVs), double cantilever rail cranes (DCRCs), and external trucks (ETs) in U‐shaped ACTs. This paper proposes a mixed integer linear programming model for optimizing the multiple equipment scheduling, aiming to minimize container completion time and AGV waiting time simultaneously. This paper customizes a hybrid genetic‐cuckoo optimization algorithm (HGCOA) with double‐point crossover and Lévy flight Cuckoo search strategies. Extensive numerical results show that the proposed HGCOA outperforms the benchmark genetic algorithms in terms of solution quality and computational time while significantly improving efficiency without substantial sacrifices in solution quality compared with the exact solution method. Overall, this study presents a promising solution for enhancing coordination and operation efficiency in U‐shaped ACTs\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13275\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13275","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

U 型自动化集装箱码头 (ACT) 是港口基础设施中的一项战略性设计,有利于同时进行装卸作业。本文探讨了在 U 型自动化集装箱码头调度多种类型设备(如双小车码头起重机 (DTQC)、自动导引车 (AGV)、双悬臂轨道起重机 (DCRC) 和外部卡车 (ET))所面临的挑战。本文提出了优化多设备调度的混合整数线性规划模型,旨在同时最小化集装箱完成时间和 AGV 等待时间。本文定制了一种混合遗传-布谷鸟优化算法(HGCOA),采用双点交叉和莱维飞行布谷鸟搜索策略。大量数值结果表明,与精确求解方法相比,所提出的 HGCOA 在求解质量和计算时间方面均优于基准遗传算法,同时在不大幅牺牲求解质量的情况下显著提高了效率。总之,本研究为提高 U 型 ACT 的协调和运行效率提出了一种很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing multiple equipment scheduling for U‐shaped automated container terminals considering loading and unloading operations
U‐shaped automated container terminals (ACTs) represent a strategic design in port infrastructure that facilitates simultaneous loading and unloading operations. This paper addresses the challenges of scheduling multiple types of equipment, such as dual trolley quay cranes (DTQCs), automated guided vehicles (AGVs), double cantilever rail cranes (DCRCs), and external trucks (ETs) in U‐shaped ACTs. This paper proposes a mixed integer linear programming model for optimizing the multiple equipment scheduling, aiming to minimize container completion time and AGV waiting time simultaneously. This paper customizes a hybrid genetic‐cuckoo optimization algorithm (HGCOA) with double‐point crossover and Lévy flight Cuckoo search strategies. Extensive numerical results show that the proposed HGCOA outperforms the benchmark genetic algorithms in terms of solution quality and computational time while significantly improving efficiency without substantial sacrifices in solution quality compared with the exact solution method. Overall, this study presents a promising solution for enhancing coordination and operation efficiency in U‐shaped ACTs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation Multifidelity graph neural networks for efficient and accurate mesh‐based partial differential equations surrogate modeling A domain adaptation methodology for enhancing the classification of structural condition states in continuously monitored historical domes Integrated vision language and foundation model for automated estimation of building lowest floor elevation Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1