Phuong N. Nguyen, Farida Samad-zada, Katherine D. Chau, Sandra M. Rehan
{"title":"利用生物多样性调查采集的野生蜜蜂的微生物组和花卉关联。","authors":"Phuong N. Nguyen, Farida Samad-zada, Katherine D. Chau, Sandra M. Rehan","doi":"10.1111/1462-2920.16657","DOIUrl":null,"url":null,"abstract":"<p>The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (<i>Agapostemon virescens</i>). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of <i>A. virescens</i> comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16657","citationCount":"0","resultStr":"{\"title\":\"Microbiome and floral associations of a wild bee using biodiversity survey collections\",\"authors\":\"Phuong N. Nguyen, Farida Samad-zada, Katherine D. Chau, Sandra M. Rehan\",\"doi\":\"10.1111/1462-2920.16657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (<i>Agapostemon virescens</i>). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of <i>A. virescens</i> comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"26 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16657\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16657\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16657","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Microbiome and floral associations of a wild bee using biodiversity survey collections
The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (Agapostemon virescens). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of A. virescens comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens