Andreea C Didilescu, Sreedevi Chinthamani, Frank A Scannapieco, Ashu Sharma
{"title":"NLRP3 炎症小体活性与牙周病发病机制--一种双向关系。","authors":"Andreea C Didilescu, Sreedevi Chinthamani, Frank A Scannapieco, Ashu Sharma","doi":"10.1111/odi.15005","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Periodontitis is an inflammatory oral disease that occurs as a result of the damaging effects of the immune response against the subgingival microflora. Among the mechanisms involved, the nucleotide-binding oligomerization domain, leucine-rich repeat-containing proteins family member NLRP3 (NLR family pyrin domain-containing 3), proposed as the key regulator of macrophage-induced inflammation, is strongly associated with periodontal disease due to the bacterial activators. This paper aimed to present key general concepts of NLRP3 inflammasome activation and regulation in periodontal disease.</p><p><strong>Method: </strong>A narrative review was conducted in order to depict the current knowledge on the relationship between NLRP3 inflammasome activity and periodontal disease. In vitro and in situ studies were retrieved and commented based on their relevance in the field.</p><p><strong>Results: </strong>The NLRP3 inflammasome activity stimulated by periodontal microbiota drive periodontal disease pathogenesis and progression. This occurs through the release of proinflammatory cytokines IL-1β, IL-18, and DAMPs (damage-associated molecular pattern molecules) following inflammasome activation. Moreover, the tissue expression of NLRP3 is dysregulated by oral microbiota, further exacerbating periodontal inflammation.</p><p><strong>Conclusion: </strong>The review provides new insights into the relationship between the NLRP3 inflammasome activity and periodontal disease pathogenesis, highlighting the roles and regulatory mechanism of inflammatory molecules involved in the disease process.</p>","PeriodicalId":19615,"journal":{"name":"Oral diseases","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480888/pdf/","citationCount":"0","resultStr":"{\"title\":\"NLRP3 inflammasome activity and periodontal disease pathogenesis-A bidirectional relationship.\",\"authors\":\"Andreea C Didilescu, Sreedevi Chinthamani, Frank A Scannapieco, Ashu Sharma\",\"doi\":\"10.1111/odi.15005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Periodontitis is an inflammatory oral disease that occurs as a result of the damaging effects of the immune response against the subgingival microflora. Among the mechanisms involved, the nucleotide-binding oligomerization domain, leucine-rich repeat-containing proteins family member NLRP3 (NLR family pyrin domain-containing 3), proposed as the key regulator of macrophage-induced inflammation, is strongly associated with periodontal disease due to the bacterial activators. This paper aimed to present key general concepts of NLRP3 inflammasome activation and regulation in periodontal disease.</p><p><strong>Method: </strong>A narrative review was conducted in order to depict the current knowledge on the relationship between NLRP3 inflammasome activity and periodontal disease. In vitro and in situ studies were retrieved and commented based on their relevance in the field.</p><p><strong>Results: </strong>The NLRP3 inflammasome activity stimulated by periodontal microbiota drive periodontal disease pathogenesis and progression. This occurs through the release of proinflammatory cytokines IL-1β, IL-18, and DAMPs (damage-associated molecular pattern molecules) following inflammasome activation. Moreover, the tissue expression of NLRP3 is dysregulated by oral microbiota, further exacerbating periodontal inflammation.</p><p><strong>Conclusion: </strong>The review provides new insights into the relationship between the NLRP3 inflammasome activity and periodontal disease pathogenesis, highlighting the roles and regulatory mechanism of inflammatory molecules involved in the disease process.</p>\",\"PeriodicalId\":19615,\"journal\":{\"name\":\"Oral diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/odi.15005\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/odi.15005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
NLRP3 inflammasome activity and periodontal disease pathogenesis-A bidirectional relationship.
Objective: Periodontitis is an inflammatory oral disease that occurs as a result of the damaging effects of the immune response against the subgingival microflora. Among the mechanisms involved, the nucleotide-binding oligomerization domain, leucine-rich repeat-containing proteins family member NLRP3 (NLR family pyrin domain-containing 3), proposed as the key regulator of macrophage-induced inflammation, is strongly associated with periodontal disease due to the bacterial activators. This paper aimed to present key general concepts of NLRP3 inflammasome activation and regulation in periodontal disease.
Method: A narrative review was conducted in order to depict the current knowledge on the relationship between NLRP3 inflammasome activity and periodontal disease. In vitro and in situ studies were retrieved and commented based on their relevance in the field.
Results: The NLRP3 inflammasome activity stimulated by periodontal microbiota drive periodontal disease pathogenesis and progression. This occurs through the release of proinflammatory cytokines IL-1β, IL-18, and DAMPs (damage-associated molecular pattern molecules) following inflammasome activation. Moreover, the tissue expression of NLRP3 is dysregulated by oral microbiota, further exacerbating periodontal inflammation.
Conclusion: The review provides new insights into the relationship between the NLRP3 inflammasome activity and periodontal disease pathogenesis, highlighting the roles and regulatory mechanism of inflammatory molecules involved in the disease process.
期刊介绍:
Oral Diseases is a multidisciplinary and international journal with a focus on head and neck disorders, edited by leaders in the field, Professor Giovanni Lodi (Editor-in-Chief, Milan, Italy), Professor Stefano Petti (Deputy Editor, Rome, Italy) and Associate Professor Gulshan Sunavala-Dossabhoy (Deputy Editor, Shreveport, LA, USA). The journal is pre-eminent in oral medicine. Oral Diseases specifically strives to link often-isolated areas of dentistry and medicine through broad-based scholarship that includes well-designed and controlled clinical research, analytical epidemiology, and the translation of basic science in pre-clinical studies. The journal typically publishes articles relevant to many related medical specialties including especially dermatology, gastroenterology, hematology, immunology, infectious diseases, neuropsychiatry, oncology and otolaryngology. The essential requirement is that all submitted research is hypothesis-driven, with significant positive and negative results both welcomed. Equal publication emphasis is placed on etiology, pathogenesis, diagnosis, prevention and treatment.