基于轻量级倒残留注意网络的癫痫发作检测

International journal of neural systems Pub Date : 2024-08-01 Epub Date: 2024-05-31 DOI:10.1142/S0129065724500424
Hongbin Lv, Yongfeng Zhang, Tiantian Xiao, Ziwei Wang, Shuai Wang, Hailing Feng, Xianxun Zhao, Yanna Zhao
{"title":"基于轻量级倒残留注意网络的癫痫发作检测","authors":"Hongbin Lv, Yongfeng Zhang, Tiantian Xiao, Ziwei Wang, Shuai Wang, Hailing Feng, Xianxun Zhao, Yanna Zhao","doi":"10.1142/S0129065724500424","DOIUrl":null,"url":null,"abstract":"<p><p>Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450042"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seizure Detection Based on Lightweight Inverted Residual Attention Network.\",\"authors\":\"Hongbin Lv, Yongfeng Zhang, Tiantian Xiao, Ziwei Wang, Shuai Wang, Hailing Feng, Xianxun Zhao, Yanna Zhao\",\"doi\":\"10.1142/S0129065724500424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2450042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065724500424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

及时、准确地检测癫痫发作对癫痫患者的诊断和治疗至关重要。现有的癫痫发作检测模型通常既复杂又耗时,这凸显了对轻量级癫痫发作检测的迫切需求。此外,现有方法往往忽略了脑电图(EEG)信号的关键特征通道和空间区域。为了解决这些问题,我们提出了一种基于脑电图的轻量级癫痫发作检测模型,命名为轻量级倒立残差注意网络(LRAN)。具体来说,我们采用四级倒置残差移动块(iRMB)来有效提取脑电图中的分层特征。我们引入了卷积块注意模块(CBAM),使模型聚焦于重要的特征通道和空间信息,从而提高了对所学特征的辨别能力。最后,卷积操作用于捕捉局部信息和特征之间的空间关系。我们在一个公开的数据集上进行了受试者内和受试者间的实验。在主体内实验中,基于片段的检测准确率为 99.25%,基于事件的检测误检率(FDR)为 0.36/h。主体间实验的准确率为 84.32%。两组实验都以较少的参数数保持了较高的分类准确率,其中乘法累加运算(MAC)为 25.86[计算公式:见正文]M,参数数为 0.57[计算公式:见正文]M。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seizure Detection Based on Lightweight Inverted Residual Attention Network.

Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Label Zero-Shot Learning Via Contrastive Label-Based Attention. Unraveling the Differential Efficiency of Dorsal and Ventral Pathways in Visual Semantic Decoding. Neural Memory State Space Models for Medical Image Segmentation. Spatially Selective Retinal Ganglion Cell Activation Using Low Invasive Extraocular Temporal Interference Stimulation. Decoding Continuous Tracking Eye Movements from Cortical Spiking Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1