{"title":"用于发射阵列天线设计的发射振幅和相位协同控制方法","authors":"Dawei Ding, Junfeng Chen, Guang Li, Hailin Hong","doi":"10.1155/2024/6300533","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, a collaborative control method of transmission amplitude and phase for transmitarray antenna (TA) design is proposed. In this proposed method, one of the most popular hypersurface fitting models, Gaussian stochastic process (GP) model, is utilized to construct an accurate surrogate model. Following this implementation, a mapping relationship between structural parameters of TA unit cell and its transmission amplitude and phase is established. The most advantage of this method is its applicability for general TA designs because it is much difficult to control the amplitude and phase of unit cell independently through adjusting separate structural parameters. To verify the high efficiency of the proposed method, three TA antennas with different scanning angles are designed to obtain high sidelobe suppression level. Measured results show that the proposed collaborative control method of amplitude and phase is much promising for high sidelobe suppression level in TA designs.</p>\n </div>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6300533","citationCount":"0","resultStr":"{\"title\":\"A Collaborative Control Method of Transmission Amplitude and Phase for Transmitarray Antenna Design\",\"authors\":\"Dawei Ding, Junfeng Chen, Guang Li, Hailin Hong\",\"doi\":\"10.1155/2024/6300533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this paper, a collaborative control method of transmission amplitude and phase for transmitarray antenna (TA) design is proposed. In this proposed method, one of the most popular hypersurface fitting models, Gaussian stochastic process (GP) model, is utilized to construct an accurate surrogate model. Following this implementation, a mapping relationship between structural parameters of TA unit cell and its transmission amplitude and phase is established. The most advantage of this method is its applicability for general TA designs because it is much difficult to control the amplitude and phase of unit cell independently through adjusting separate structural parameters. To verify the high efficiency of the proposed method, three TA antennas with different scanning angles are designed to obtain high sidelobe suppression level. Measured results show that the proposed collaborative control method of amplitude and phase is much promising for high sidelobe suppression level in TA designs.</p>\\n </div>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6300533\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6300533\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6300533","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种用于发射阵列天线(TA)设计的传输振幅和相位协同控制方法。在该方法中,利用了最流行的超曲面拟合模型之一--高斯随机过程(GP)模型来构建精确的代理模型。在此基础上,建立了 TA 单元结构参数与其传输振幅和相位之间的映射关系。这种方法的最大优点是适用于一般的 TA 设计,因为通过调整单独的结构参数来独立控制单元尺寸的振幅和相位非常困难。为了验证所提方法的高效性,我们设计了三个不同扫描角度的 TA 天线,以获得较高的侧叶抑制水平。测量结果表明,所提出的振幅和相位协同控制方法有望在 TA 设计中实现高边音抑制水平。
A Collaborative Control Method of Transmission Amplitude and Phase for Transmitarray Antenna Design
In this paper, a collaborative control method of transmission amplitude and phase for transmitarray antenna (TA) design is proposed. In this proposed method, one of the most popular hypersurface fitting models, Gaussian stochastic process (GP) model, is utilized to construct an accurate surrogate model. Following this implementation, a mapping relationship between structural parameters of TA unit cell and its transmission amplitude and phase is established. The most advantage of this method is its applicability for general TA designs because it is much difficult to control the amplitude and phase of unit cell independently through adjusting separate structural parameters. To verify the high efficiency of the proposed method, three TA antennas with different scanning angles are designed to obtain high sidelobe suppression level. Measured results show that the proposed collaborative control method of amplitude and phase is much promising for high sidelobe suppression level in TA designs.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.