评估新型高密度脑电图传感器网结构,以提高卷发或紧卷头发婴儿的包容性。

IF 4.6 2区 医学 Q1 NEUROSCIENCES Developmental Cognitive Neuroscience Pub Date : 2024-06-01 DOI:10.1016/j.dcn.2024.101396
Nwabisa Mlandu , Sarah A. McCormick , Lauren Davel , Michal R. Zieff , Layla Bradford , Donna Herr , Chloë A. Jacobs , Anele Khumalo , Candice Knipe , Zamazimba Madi , Thandeka Mazubane , Bokang Methola , Tembeka Mhlakwaphalwa , Marlie Miles , Zayaan Goolam Nabi , Rabelani Negota , Khanyisa Nkubungu , Tracy Pan , Reese Samuels , Sadeeka Williams , Laurel J. Gabard-Durnam
{"title":"评估新型高密度脑电图传感器网结构,以提高卷发或紧卷头发婴儿的包容性。","authors":"Nwabisa Mlandu ,&nbsp;Sarah A. McCormick ,&nbsp;Lauren Davel ,&nbsp;Michal R. Zieff ,&nbsp;Layla Bradford ,&nbsp;Donna Herr ,&nbsp;Chloë A. Jacobs ,&nbsp;Anele Khumalo ,&nbsp;Candice Knipe ,&nbsp;Zamazimba Madi ,&nbsp;Thandeka Mazubane ,&nbsp;Bokang Methola ,&nbsp;Tembeka Mhlakwaphalwa ,&nbsp;Marlie Miles ,&nbsp;Zayaan Goolam Nabi ,&nbsp;Rabelani Negota ,&nbsp;Khanyisa Nkubungu ,&nbsp;Tracy Pan ,&nbsp;Reese Samuels ,&nbsp;Sadeeka Williams ,&nbsp;Laurel J. Gabard-Durnam","doi":"10.1016/j.dcn.2024.101396","DOIUrl":null,"url":null,"abstract":"<div><p>Electroencephalography (EEG) is an important tool in the field of developmental cognitive neuroscience for indexing neural activity. However, racial biases persist in EEG research that limit the utility of this tool. One bias comes from the structure of EEG nets/caps that do not facilitate equitable data collection across hair textures and types. Recent efforts have improved EEG net/cap design, but these solutions can be time-intensive, reduce sensor density, and are more difficult to implement in younger populations. The present study focused on testing EEG sensor net designs over infancy. Specifically, we compared EEG data quality and retention between two high-density saline-based EEG sensor net designs from the same company (Magstim EGI, Whitland, UK) within the same infants during a baseline EEG paradigm. We found that within infants, the tall sensor nets resulted in lower impedances during collection, including lower impedances in the key online reference electrode for those with greater hair heights and resulted in a greater number of usable EEG channels and data segments retained during pre-processing. These results suggest that along with other best practices, the modified tall sensor net design is useful for improving data quality and retention in infant participants with curly or tightly-coiled hair.</p></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"67 ","pages":"Article 101396"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878929324000574/pdfft?md5=8e3a34e7b52c152b70ee46a378ff7da0&pid=1-s2.0-S1878929324000574-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluating a novel high-density EEG sensor net structure for improving inclusivity in infants with curly or tightly coiled hair\",\"authors\":\"Nwabisa Mlandu ,&nbsp;Sarah A. McCormick ,&nbsp;Lauren Davel ,&nbsp;Michal R. Zieff ,&nbsp;Layla Bradford ,&nbsp;Donna Herr ,&nbsp;Chloë A. Jacobs ,&nbsp;Anele Khumalo ,&nbsp;Candice Knipe ,&nbsp;Zamazimba Madi ,&nbsp;Thandeka Mazubane ,&nbsp;Bokang Methola ,&nbsp;Tembeka Mhlakwaphalwa ,&nbsp;Marlie Miles ,&nbsp;Zayaan Goolam Nabi ,&nbsp;Rabelani Negota ,&nbsp;Khanyisa Nkubungu ,&nbsp;Tracy Pan ,&nbsp;Reese Samuels ,&nbsp;Sadeeka Williams ,&nbsp;Laurel J. Gabard-Durnam\",\"doi\":\"10.1016/j.dcn.2024.101396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electroencephalography (EEG) is an important tool in the field of developmental cognitive neuroscience for indexing neural activity. However, racial biases persist in EEG research that limit the utility of this tool. One bias comes from the structure of EEG nets/caps that do not facilitate equitable data collection across hair textures and types. Recent efforts have improved EEG net/cap design, but these solutions can be time-intensive, reduce sensor density, and are more difficult to implement in younger populations. The present study focused on testing EEG sensor net designs over infancy. Specifically, we compared EEG data quality and retention between two high-density saline-based EEG sensor net designs from the same company (Magstim EGI, Whitland, UK) within the same infants during a baseline EEG paradigm. We found that within infants, the tall sensor nets resulted in lower impedances during collection, including lower impedances in the key online reference electrode for those with greater hair heights and resulted in a greater number of usable EEG channels and data segments retained during pre-processing. These results suggest that along with other best practices, the modified tall sensor net design is useful for improving data quality and retention in infant participants with curly or tightly-coiled hair.</p></div>\",\"PeriodicalId\":49083,\"journal\":{\"name\":\"Developmental Cognitive Neuroscience\",\"volume\":\"67 \",\"pages\":\"Article 101396\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878929324000574/pdfft?md5=8e3a34e7b52c152b70ee46a378ff7da0&pid=1-s2.0-S1878929324000574-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878929324000574\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929324000574","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)是发育认知神经科学领域的一项重要工具,用于索引神经活动。然而,脑电图研究中持续存在的种族偏见限制了这一工具的实用性。其中一个偏见来自于脑电图网/帽的结构,这种结构不利于公平地收集不同发质和类型的数据。最近的努力改进了脑电图网/帽的设计,但这些解决方案可能耗费大量时间、降低传感器密度,而且更难在年轻人群中实施。本研究的重点是测试婴儿期的脑电图传感器网设计。具体来说,我们比较了同一家公司(Magstim EGI,Whitland,UK)的两种基于生理盐水的高密度脑电图传感器网设计在基线脑电图范式中对同一婴儿的脑电图数据质量和保留情况。我们发现,在婴儿中,高的传感器网在采集过程中阻抗较低,包括毛发高度较高的婴儿的关键在线参考电极阻抗较低,在预处理过程中保留的可用脑电图通道和数据片段较多。这些结果表明,经过改进的高传感器网设计与其他最佳实践相结合,有助于提高数据质量和数据保留率,适用于头发卷曲或紧卷的婴儿参与者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating a novel high-density EEG sensor net structure for improving inclusivity in infants with curly or tightly coiled hair

Electroencephalography (EEG) is an important tool in the field of developmental cognitive neuroscience for indexing neural activity. However, racial biases persist in EEG research that limit the utility of this tool. One bias comes from the structure of EEG nets/caps that do not facilitate equitable data collection across hair textures and types. Recent efforts have improved EEG net/cap design, but these solutions can be time-intensive, reduce sensor density, and are more difficult to implement in younger populations. The present study focused on testing EEG sensor net designs over infancy. Specifically, we compared EEG data quality and retention between two high-density saline-based EEG sensor net designs from the same company (Magstim EGI, Whitland, UK) within the same infants during a baseline EEG paradigm. We found that within infants, the tall sensor nets resulted in lower impedances during collection, including lower impedances in the key online reference electrode for those with greater hair heights and resulted in a greater number of usable EEG channels and data segments retained during pre-processing. These results suggest that along with other best practices, the modified tall sensor net design is useful for improving data quality and retention in infant participants with curly or tightly-coiled hair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
期刊最新文献
Establishing a model of peer support for pregnant persons with a substance use disorder as an innovative approach for engaging participants in the healthy brain and child development study. Co-developing sleep-wake and sensory foundations for cognition in the human fetus and newborn. State-dependent inter-network functional connectivity development in neonatal brain from the developing human connectome project. How will developmental neuroimaging contribute to the prediction of neurodevelopmental or psychiatric disorders? Challenges and opportunities. Harmonizing multisite neonatal diffusion-weighted brain MRI data for developmental neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1