多态性,是特征还是缺陷?通过植物激素信号转导工程协调植物生长、发育和环境响应

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Current opinion in biotechnology Pub Date : 2024-05-31 DOI:10.1016/j.copbio.2024.103151
Deisiany Ferriera Neres , R Clay Wright
{"title":"多态性,是特征还是缺陷?通过植物激素信号转导工程协调植物生长、发育和环境响应","authors":"Deisiany Ferriera Neres ,&nbsp;R Clay Wright","doi":"10.1016/j.copbio.2024.103151","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of gene editing technologies such as CRISPR has simplified co-ordinating trait development. However, identifying candidate genes remains a challenge due to complex gene networks and pathways. These networks exhibit pleiotropy, complicating the determination of specific gene and pathway functions. In this review, we explore how systems biology and single-cell sequencing technologies can aid in identifying candidate genes for co-ordinating specifics of plant growth and development within specific temporal and tissue contexts. Exploring sequence–function space of these candidate genes and pathway modules with synthetic biology allows us to test hypotheses and define genotype–phenotype relationships through reductionist approaches. Collectively, these techniques hold the potential to advance breeding and genetic engineering strategies while also addressing genetic diversity issues critical for adaptation and trait development.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"88 ","pages":"Article 103151"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924000879/pdfft?md5=1aafe659f2cf5e25200fb647ed45a14c&pid=1-s2.0-S0958166924000879-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pleiotropy, a feature or a bug? Toward co-ordinating plant growth, development, and environmental responses through engineering plant hormone signaling\",\"authors\":\"Deisiany Ferriera Neres ,&nbsp;R Clay Wright\",\"doi\":\"10.1016/j.copbio.2024.103151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advent of gene editing technologies such as CRISPR has simplified co-ordinating trait development. However, identifying candidate genes remains a challenge due to complex gene networks and pathways. These networks exhibit pleiotropy, complicating the determination of specific gene and pathway functions. In this review, we explore how systems biology and single-cell sequencing technologies can aid in identifying candidate genes for co-ordinating specifics of plant growth and development within specific temporal and tissue contexts. Exploring sequence–function space of these candidate genes and pathway modules with synthetic biology allows us to test hypotheses and define genotype–phenotype relationships through reductionist approaches. Collectively, these techniques hold the potential to advance breeding and genetic engineering strategies while also addressing genetic diversity issues critical for adaptation and trait development.</p></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"88 \",\"pages\":\"Article 103151\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0958166924000879/pdfft?md5=1aafe659f2cf5e25200fb647ed45a14c&pid=1-s2.0-S0958166924000879-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958166924000879\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000879","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

CRISPR 等基因编辑技术的出现简化了性状发展的协调过程。然而,由于基因网络和通路十分复杂,确定候选基因仍然是一项挑战。这些网络表现出多效性,使确定特定基因和通路功能的工作变得更加复杂。在这篇综述中,我们将探讨系统生物学和单细胞测序技术如何帮助确定候选基因,以协调特定时间和组织背景下植物生长和发育的具体特性。利用合成生物学探索这些候选基因和通路模块的序列-功能空间,可让我们通过还原论方法检验假设并确定基因型与表型之间的关系。总之,这些技术具有推动育种和基因工程战略的潜力,同时还能解决对适应性和性状发展至关重要的遗传多样性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pleiotropy, a feature or a bug? Toward co-ordinating plant growth, development, and environmental responses through engineering plant hormone signaling

The advent of gene editing technologies such as CRISPR has simplified co-ordinating trait development. However, identifying candidate genes remains a challenge due to complex gene networks and pathways. These networks exhibit pleiotropy, complicating the determination of specific gene and pathway functions. In this review, we explore how systems biology and single-cell sequencing technologies can aid in identifying candidate genes for co-ordinating specifics of plant growth and development within specific temporal and tissue contexts. Exploring sequence–function space of these candidate genes and pathway modules with synthetic biology allows us to test hypotheses and define genotype–phenotype relationships through reductionist approaches. Collectively, these techniques hold the potential to advance breeding and genetic engineering strategies while also addressing genetic diversity issues critical for adaptation and trait development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
期刊最新文献
A biotechnological perspective on sand filtration for drinking water production National phosphorus planning for food and environmental security Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants Review: can bioelectrochemical sensors be used to monitor soil microbiome activity and fertility? Engineering T-cell receptor–like antibodies for biologics and cell therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1