响应面方法学:利用氧化锌对水溶液中的甲基橙进行光催化降解

IF 2.8 3区 化学 Q2 CHEMISTRY, APPLIED Topics in Catalysis Pub Date : 2024-05-30 DOI:10.1007/s11244-024-01969-x
Muhammad Asif, Muhammad Shafiq, Faiza Imtiaz, Sheraz Ahmed, Abdulrahman Ali Alazba, Hafiz Nawaz Hussain, Farah Nemat Butt, Syeda Alvia Zainab, Muhammad Kashif Khan, Muhammad Bilal
{"title":"响应面方法学:利用氧化锌对水溶液中的甲基橙进行光催化降解","authors":"Muhammad Asif, Muhammad Shafiq, Faiza Imtiaz, Sheraz Ahmed, Abdulrahman Ali Alazba, Hafiz Nawaz Hussain, Farah Nemat Butt, Syeda Alvia Zainab, Muhammad Kashif Khan, Muhammad Bilal","doi":"10.1007/s11244-024-01969-x","DOIUrl":null,"url":null,"abstract":"<p>Pollution from dye-containing industrial wastewater is a major health hazard in many nations, necessitating modern remediation approaches. Herein, zinc oxide (ZnO) was employed to degrade methyl orange (MO) as an organic dye pollutant under UV light irradiation. The performance was observed experimentally and theoretically under optimized conditions including the pH (11), the concentration of the nanoparticle solution (900 ppm), and time (3 h), resulting in a degradation efficiency of 89.6%. Furthermore, the influence of various parameters on MO degradation was evaluated by response surface methodology (RSM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) was performed to investigate the crystallinity and morphological behavior of ZnO-NPs. In addition, the surface chemical composition was evaluated by the XPS analysis. This study evaluates the degradation efficiency of ~ 90% using single metal oxide to degrade MO, opening new opportunities for environmental applications.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"2010 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Degradation of Methyl Orange from Aqueous Solution Using ZnO by Response Surface Methodology\",\"authors\":\"Muhammad Asif, Muhammad Shafiq, Faiza Imtiaz, Sheraz Ahmed, Abdulrahman Ali Alazba, Hafiz Nawaz Hussain, Farah Nemat Butt, Syeda Alvia Zainab, Muhammad Kashif Khan, Muhammad Bilal\",\"doi\":\"10.1007/s11244-024-01969-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pollution from dye-containing industrial wastewater is a major health hazard in many nations, necessitating modern remediation approaches. Herein, zinc oxide (ZnO) was employed to degrade methyl orange (MO) as an organic dye pollutant under UV light irradiation. The performance was observed experimentally and theoretically under optimized conditions including the pH (11), the concentration of the nanoparticle solution (900 ppm), and time (3 h), resulting in a degradation efficiency of 89.6%. Furthermore, the influence of various parameters on MO degradation was evaluated by response surface methodology (RSM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) was performed to investigate the crystallinity and morphological behavior of ZnO-NPs. In addition, the surface chemical composition was evaluated by the XPS analysis. This study evaluates the degradation efficiency of ~ 90% using single metal oxide to degrade MO, opening new opportunities for environmental applications.</p>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"2010 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11244-024-01969-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01969-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在许多国家,含染料工业废水的污染是对健康的一大危害,因此需要采用现代化的治理方法。本文采用氧化锌(ZnO)在紫外光照射下降解有机染料污染物甲基橙(MO)。在 pH 值(11)、纳米粒子溶液浓度(900 ppm)和时间(3 h)等优化条件下,实验和理论观察了其性能,结果表明降解效率为 89.6%。此外,还利用响应面法(RSM)评估了各种参数对 MO 降解的影响。通过 X 射线衍射(XRD)和透射电子显微镜(TEM)研究了 ZnO-NPs 的结晶度和形态行为。此外,还通过 XPS 分析评估了表面化学成分。这项研究评估了使用单一金属氧化物降解 MO 的降解效率约为 90%,为环境应用带来了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photocatalytic Degradation of Methyl Orange from Aqueous Solution Using ZnO by Response Surface Methodology

Pollution from dye-containing industrial wastewater is a major health hazard in many nations, necessitating modern remediation approaches. Herein, zinc oxide (ZnO) was employed to degrade methyl orange (MO) as an organic dye pollutant under UV light irradiation. The performance was observed experimentally and theoretically under optimized conditions including the pH (11), the concentration of the nanoparticle solution (900 ppm), and time (3 h), resulting in a degradation efficiency of 89.6%. Furthermore, the influence of various parameters on MO degradation was evaluated by response surface methodology (RSM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) was performed to investigate the crystallinity and morphological behavior of ZnO-NPs. In addition, the surface chemical composition was evaluated by the XPS analysis. This study evaluates the degradation efficiency of ~ 90% using single metal oxide to degrade MO, opening new opportunities for environmental applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Catalysis
Topics in Catalysis 化学-物理化学
CiteScore
5.70
自引率
5.60%
发文量
197
审稿时长
2 months
期刊介绍: Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief. The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
期刊最新文献
Biocrude oil Production Upgrading by Catalytic Assisted Hydrothermal Liquefaction of Underutilized non-edible seed Biomass Revolutionizing Waste Management: Solidification of Landfill Leachates Using Alkali-Activated Slag Synthesis of α,ω-Primary Hydroxyl-Terminated Polyether Polyols Using Prussian Blue Analogs as Catalysts Experimental Verification of Low-Pressure Kinetics Model for Direct Synthesis of Dimethyl Carbonate Over CeO2 Catalyst Flow Semi-continuous Mechanochemistry as a Versatile and Efficient Tool for the Synthesis of Hydrocalumite and the Isomerization of Glucose to Fructose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1