Michael R. Poulson, Arno Ziggy Uvin, Kelly M. Kenzik
{"title":"环境污染、种族隔离和肺癌发病率","authors":"Michael R. Poulson, Arno Ziggy Uvin, Kelly M. Kenzik","doi":"10.1007/s11869-024-01588-1","DOIUrl":null,"url":null,"abstract":"<div><p>There are wide racial disparities in lung cancer incidence, treatment, and outcomes. Previous studies have shown the impact of structural racism and the built environment on lung cancer outcomes in Black communities. The current study sought to understand the mediation of airborne pollutants between racial segregation and lung cancer incidence in the United States. Lung cancer incidence data for Black/white populations from 2014 to 2018 were obtained from the CDC. We assessed the impact of segregation on lung cancer incidence and the mediating effects of pollutants SO<sub>2</sub>, NO<sub>2</sub>, PM<sub>2.5</sub>, O<sub>3</sub>, and CO in the pathway. We estimated the indirect effect of each pollutant on the interaction between segregation and cancer outcomes. We found that segregation was associated with an 11% increase in lung cancer incidence among Black individuals (IRR 1.11, 95%CI 1.08,1.14) and a 7% increase in white lung cancer incidence (IRR 1.07, 95%CI 1.05,1.09). For Black lung cancer rates, this effect was mediated by SO<sub>2</sub>/ NO<sub>2</sub> (23%), PM<sub>2.5</sub> (9.2%), and smoking (36%). For white lung cancer rate, the effect was mediated through SO<sub>2</sub>/ NO<sub>2</sub> (25%), PM<sub>2.5</sub> (15%), O<sub>3</sub>/CO (4%), and smoking (37.4%). Air pollution is an important mediating factor on lung cancer incidence in more segregated areas, suggesting that the increased pollution in more segregated areas likely also affects white residents, leading to higher levels of lung cancer compared to their counterparts in less segregated areas. Policies targeting polluting sources in segregated areas will be important in reducing lung cancer incidence and disparities therein.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 11","pages":"2569 - 2577"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental pollution, racial segregation, and lung cancer incidence\",\"authors\":\"Michael R. Poulson, Arno Ziggy Uvin, Kelly M. Kenzik\",\"doi\":\"10.1007/s11869-024-01588-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There are wide racial disparities in lung cancer incidence, treatment, and outcomes. Previous studies have shown the impact of structural racism and the built environment on lung cancer outcomes in Black communities. The current study sought to understand the mediation of airborne pollutants between racial segregation and lung cancer incidence in the United States. Lung cancer incidence data for Black/white populations from 2014 to 2018 were obtained from the CDC. We assessed the impact of segregation on lung cancer incidence and the mediating effects of pollutants SO<sub>2</sub>, NO<sub>2</sub>, PM<sub>2.5</sub>, O<sub>3</sub>, and CO in the pathway. We estimated the indirect effect of each pollutant on the interaction between segregation and cancer outcomes. We found that segregation was associated with an 11% increase in lung cancer incidence among Black individuals (IRR 1.11, 95%CI 1.08,1.14) and a 7% increase in white lung cancer incidence (IRR 1.07, 95%CI 1.05,1.09). For Black lung cancer rates, this effect was mediated by SO<sub>2</sub>/ NO<sub>2</sub> (23%), PM<sub>2.5</sub> (9.2%), and smoking (36%). For white lung cancer rate, the effect was mediated through SO<sub>2</sub>/ NO<sub>2</sub> (25%), PM<sub>2.5</sub> (15%), O<sub>3</sub>/CO (4%), and smoking (37.4%). Air pollution is an important mediating factor on lung cancer incidence in more segregated areas, suggesting that the increased pollution in more segregated areas likely also affects white residents, leading to higher levels of lung cancer compared to their counterparts in less segregated areas. Policies targeting polluting sources in segregated areas will be important in reducing lung cancer incidence and disparities therein.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"17 11\",\"pages\":\"2569 - 2577\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01588-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01588-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Environmental pollution, racial segregation, and lung cancer incidence
There are wide racial disparities in lung cancer incidence, treatment, and outcomes. Previous studies have shown the impact of structural racism and the built environment on lung cancer outcomes in Black communities. The current study sought to understand the mediation of airborne pollutants between racial segregation and lung cancer incidence in the United States. Lung cancer incidence data for Black/white populations from 2014 to 2018 were obtained from the CDC. We assessed the impact of segregation on lung cancer incidence and the mediating effects of pollutants SO2, NO2, PM2.5, O3, and CO in the pathway. We estimated the indirect effect of each pollutant on the interaction between segregation and cancer outcomes. We found that segregation was associated with an 11% increase in lung cancer incidence among Black individuals (IRR 1.11, 95%CI 1.08,1.14) and a 7% increase in white lung cancer incidence (IRR 1.07, 95%CI 1.05,1.09). For Black lung cancer rates, this effect was mediated by SO2/ NO2 (23%), PM2.5 (9.2%), and smoking (36%). For white lung cancer rate, the effect was mediated through SO2/ NO2 (25%), PM2.5 (15%), O3/CO (4%), and smoking (37.4%). Air pollution is an important mediating factor on lung cancer incidence in more segregated areas, suggesting that the increased pollution in more segregated areas likely also affects white residents, leading to higher levels of lung cancer compared to their counterparts in less segregated areas. Policies targeting polluting sources in segregated areas will be important in reducing lung cancer incidence and disparities therein.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.