基于变压器的船舶流量预测方法

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Geoinformatica Pub Date : 2024-05-30 DOI:10.1007/s10707-024-00521-z
Petros Mandalis, Eva Chondrodima, Yannis Kontoulis, Nikos Pelekis, Yannis Theodoridis
{"title":"基于变压器的船舶流量预测方法","authors":"Petros Mandalis, Eva Chondrodima, Yannis Kontoulis, Nikos Pelekis, Yannis Theodoridis","doi":"10.1007/s10707-024-00521-z","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the maritime domain has experienced tremendous growth due to the exploitation of big traffic data. Particular emphasis has been placed on deep learning methodologies for decision-making. Accurate Vessel Traffic Flow Forecasting (VTFF) is essential for optimizing navigation efficiency and proactively managing maritime operations. In this work, we present a distributed Unified Approach for VTFF (dUA-VTFF), which employs Transformer models and leverages the Apache Spark big data distributed processing framework to learn from historical maritime data and predict future traffic flows over a time horizon of up to 30 min. Particularly, dUA-VTFF leverages vessel timestamped locations along with future vessel locations produced by a Vessel Route Forecasting model. These data are arranged into a spatiotemporal grid to formulate the traffic flows. Subsequently, through the Apache Spark, each grid cell is allocated to a computing node, where appropriately designed Transformer-based models forecast traffic flows in a distributed framework. Experimental evaluations conducted on real Automatic Identification System (AIS) datasets demonstrate the improved efficiency of the dUA-VTFF compared to state-of-the-art traffic flow forecasting methods.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transformer-based method for vessel traffic flow forecasting\",\"authors\":\"Petros Mandalis, Eva Chondrodima, Yannis Kontoulis, Nikos Pelekis, Yannis Theodoridis\",\"doi\":\"10.1007/s10707-024-00521-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the maritime domain has experienced tremendous growth due to the exploitation of big traffic data. Particular emphasis has been placed on deep learning methodologies for decision-making. Accurate Vessel Traffic Flow Forecasting (VTFF) is essential for optimizing navigation efficiency and proactively managing maritime operations. In this work, we present a distributed Unified Approach for VTFF (dUA-VTFF), which employs Transformer models and leverages the Apache Spark big data distributed processing framework to learn from historical maritime data and predict future traffic flows over a time horizon of up to 30 min. Particularly, dUA-VTFF leverages vessel timestamped locations along with future vessel locations produced by a Vessel Route Forecasting model. These data are arranged into a spatiotemporal grid to formulate the traffic flows. Subsequently, through the Apache Spark, each grid cell is allocated to a computing node, where appropriately designed Transformer-based models forecast traffic flows in a distributed framework. Experimental evaluations conducted on real Automatic Identification System (AIS) datasets demonstrate the improved efficiency of the dUA-VTFF compared to state-of-the-art traffic flow forecasting methods.</p>\",\"PeriodicalId\":55109,\"journal\":{\"name\":\"Geoinformatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoinformatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10707-024-00521-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-024-00521-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于对交通大数据的利用,海事领域经历了巨大的发展。深度学习决策方法尤其受到重视。准确的船舶交通流预测(VTFF)对于优化航行效率和主动管理海事运营至关重要。在这项工作中,我们提出了一种用于 VTFF 的分布式统一方法(dUA-VTFF),该方法采用 Transformer 模型并利用 Apache Spark 大数据分布式处理框架,从历史海事数据中学习并预测未来交通流量,时间跨度最长可达 30 分钟。特别是,dUA-VTFF 利用船只时间戳位置以及船只航线预测模型生成的未来船只位置。这些数据被编排成一个时空网格,用于计算交通流量。随后,通过 Apache Spark,每个网格单元被分配到一个计算节点,在此节点上,基于 Transformer 的适当设计模型在分布式框架中预测交通流。在真实的自动识别系统(AIS)数据集上进行的实验评估表明,与最先进的交通流预测方法相比,dUA-VTFF 的效率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A transformer-based method for vessel traffic flow forecasting

In recent years, the maritime domain has experienced tremendous growth due to the exploitation of big traffic data. Particular emphasis has been placed on deep learning methodologies for decision-making. Accurate Vessel Traffic Flow Forecasting (VTFF) is essential for optimizing navigation efficiency and proactively managing maritime operations. In this work, we present a distributed Unified Approach for VTFF (dUA-VTFF), which employs Transformer models and leverages the Apache Spark big data distributed processing framework to learn from historical maritime data and predict future traffic flows over a time horizon of up to 30 min. Particularly, dUA-VTFF leverages vessel timestamped locations along with future vessel locations produced by a Vessel Route Forecasting model. These data are arranged into a spatiotemporal grid to formulate the traffic flows. Subsequently, through the Apache Spark, each grid cell is allocated to a computing node, where appropriately designed Transformer-based models forecast traffic flows in a distributed framework. Experimental evaluations conducted on real Automatic Identification System (AIS) datasets demonstrate the improved efficiency of the dUA-VTFF compared to state-of-the-art traffic flow forecasting methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoinformatica
Geoinformatica 地学-计算机:信息系统
CiteScore
5.60
自引率
10.00%
发文量
25
审稿时长
6 months
期刊介绍: GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds. This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.
期刊最新文献
LENS: label sparsity-tolerant adversarial learning on spatial deceptive reviews A case study of spatiotemporal forecasting techniques for weather forecasting CLMTR: a generic framework for contrastive multi-modal trajectory representation learning Periodicity aware spatial-temporal adaptive hypergraph neural network for traffic forecasting ICN: Interactive convolutional network for forecasting travel demand of shared micromobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1