{"title":"通过多模态学习分析实现体现式团队合作交流的自动转录和编码","authors":"Linxuan Zhao, Dragan Gašević, Zachari Swiecki, Yuheng Li, Jionghao Lin, Lele Sha, Lixiang Yan, Riordan Alfredo, Xinyu Li, Roberto Martinez-Maldonado","doi":"10.1111/bjet.13476","DOIUrl":null,"url":null,"abstract":"<p>Effective collaboration and teamwork skills are critical in high-risk sectors, as deficiencies in these areas can result in injuries and risk of death. To foster the growth of these vital skills, immersive learning spaces have been created to simulate real-world scenarios, enabling students to safely improve their teamwork abilities. In such learning environments, multiple dialogue segments can occur concurrently as students independently organise themselves to tackle tasks in parallel across diverse spatial locations. This complex situation creates challenges for educators in assessing teamwork and for students in reflecting on their performance, especially considering the importance of effective communication in embodied teamwork. To address this, we propose an automated approach for generating teamwork analytics based on spatial and speech data. We illustrate this approach within a dynamic, immersive healthcare learning environment centred on embodied teamwork. Moreover, we evaluated whether the automated approach can produce transcriptions and epistemic networks of spatially distributed dialogue segments with a quality comparable to those generated manually for research objectives. This paper makes two key contributions: (1) it proposes an approach that integrates automated speech recognition and natural language processing techniques to automate the transcription and coding of team communication and generate analytics; and (2) it provides analyses of the errors in outputs generated by those techniques, offering insights for researchers and practitioners involved in the design of similar systems.\n </p>","PeriodicalId":48315,"journal":{"name":"British Journal of Educational Technology","volume":"55 4","pages":"1673-1702"},"PeriodicalIF":6.7000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bjet.13476","citationCount":"0","resultStr":"{\"title\":\"Towards automated transcribing and coding of embodied teamwork communication through multimodal learning analytics\",\"authors\":\"Linxuan Zhao, Dragan Gašević, Zachari Swiecki, Yuheng Li, Jionghao Lin, Lele Sha, Lixiang Yan, Riordan Alfredo, Xinyu Li, Roberto Martinez-Maldonado\",\"doi\":\"10.1111/bjet.13476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Effective collaboration and teamwork skills are critical in high-risk sectors, as deficiencies in these areas can result in injuries and risk of death. To foster the growth of these vital skills, immersive learning spaces have been created to simulate real-world scenarios, enabling students to safely improve their teamwork abilities. In such learning environments, multiple dialogue segments can occur concurrently as students independently organise themselves to tackle tasks in parallel across diverse spatial locations. This complex situation creates challenges for educators in assessing teamwork and for students in reflecting on their performance, especially considering the importance of effective communication in embodied teamwork. To address this, we propose an automated approach for generating teamwork analytics based on spatial and speech data. We illustrate this approach within a dynamic, immersive healthcare learning environment centred on embodied teamwork. Moreover, we evaluated whether the automated approach can produce transcriptions and epistemic networks of spatially distributed dialogue segments with a quality comparable to those generated manually for research objectives. This paper makes two key contributions: (1) it proposes an approach that integrates automated speech recognition and natural language processing techniques to automate the transcription and coding of team communication and generate analytics; and (2) it provides analyses of the errors in outputs generated by those techniques, offering insights for researchers and practitioners involved in the design of similar systems.\\n </p>\",\"PeriodicalId\":48315,\"journal\":{\"name\":\"British Journal of Educational Technology\",\"volume\":\"55 4\",\"pages\":\"1673-1702\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bjet.13476\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Educational Technology\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bjet.13476\",\"RegionNum\":1,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Educational Technology","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bjet.13476","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Towards automated transcribing and coding of embodied teamwork communication through multimodal learning analytics
Effective collaboration and teamwork skills are critical in high-risk sectors, as deficiencies in these areas can result in injuries and risk of death. To foster the growth of these vital skills, immersive learning spaces have been created to simulate real-world scenarios, enabling students to safely improve their teamwork abilities. In such learning environments, multiple dialogue segments can occur concurrently as students independently organise themselves to tackle tasks in parallel across diverse spatial locations. This complex situation creates challenges for educators in assessing teamwork and for students in reflecting on their performance, especially considering the importance of effective communication in embodied teamwork. To address this, we propose an automated approach for generating teamwork analytics based on spatial and speech data. We illustrate this approach within a dynamic, immersive healthcare learning environment centred on embodied teamwork. Moreover, we evaluated whether the automated approach can produce transcriptions and epistemic networks of spatially distributed dialogue segments with a quality comparable to those generated manually for research objectives. This paper makes two key contributions: (1) it proposes an approach that integrates automated speech recognition and natural language processing techniques to automate the transcription and coding of team communication and generate analytics; and (2) it provides analyses of the errors in outputs generated by those techniques, offering insights for researchers and practitioners involved in the design of similar systems.
期刊介绍:
BJET is a primary source for academics and professionals in the fields of digital educational and training technology throughout the world. The Journal is published by Wiley on behalf of The British Educational Research Association (BERA). It publishes theoretical perspectives, methodological developments and high quality empirical research that demonstrate whether and how applications of instructional/educational technology systems, networks, tools and resources lead to improvements in formal and non-formal education at all levels, from early years through to higher, technical and vocational education, professional development and corporate training.