WS2 金属触点中费米级析出和界面质量增强的置换掺杂策略

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-31 DOI:10.1021/acsaelm.4c00609
Abdul Ghaffar*, Nihar Ranjan Mohapatra, Ryo Maezono and Kenta Hongo*, 
{"title":"WS2 金属触点中费米级析出和界面质量增强的置换掺杂策略","authors":"Abdul Ghaffar*,&nbsp;Nihar Ranjan Mohapatra,&nbsp;Ryo Maezono and Kenta Hongo*,&nbsp;","doi":"10.1021/acsaelm.4c00609","DOIUrl":null,"url":null,"abstract":"<p >Addressing contact resistance challenges at the interface between metals and transition-metal dichalcogenides (TMDs) remains a complex task due to the persistent Fermi level pinning (FLP) effect near the conduction band minima. Various methods have been explored to mitigate FLP by reducing the chemical interaction between metals and semiconductors. However, these approaches often lead to undesirable consequences, such as reduced adhesion and increased tunneling resistance, ultimately resulting in poor interface quality. A promising solution to overcome these limitations lies in the use of substitutionally doped semiconductor/metal interfaces. We conducted a thorough investigation using first-principles calculations, focusing on S-substituted WS<sub>2</sub>-metal interfaces involving commonly used metals such as Ag, Au, Cu, Pd, Pt, Sc, and Ti. Additionally, we explored the incorporation of nonmetallic dopants, including C, Cl, N, F, O, and P, into the WS<sub>2</sub> surface. Our analysis revolved around several critical parameters, including adhesion strength, Schottky barrier height (SBH), tunnel barrier, charge transfer across the interface, and interface dipole formation. Our study demonstrated that substitutionally doped interfaces can undergo Fermi level depinning while maintaining an enhanced adhesion strength and lower tunneling barrier at the interface. This finding marks a departure from existing methods and offers a promising avenue for inducing p-type contact polarity and addressing contact resistance challenges in TMDs.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c00609","citationCount":"0","resultStr":"{\"title\":\"Substitutional Doping Strategies for Fermi Level Depinning and Enhanced Interface Quality in WS2-Metal Contacts\",\"authors\":\"Abdul Ghaffar*,&nbsp;Nihar Ranjan Mohapatra,&nbsp;Ryo Maezono and Kenta Hongo*,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c00609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Addressing contact resistance challenges at the interface between metals and transition-metal dichalcogenides (TMDs) remains a complex task due to the persistent Fermi level pinning (FLP) effect near the conduction band minima. Various methods have been explored to mitigate FLP by reducing the chemical interaction between metals and semiconductors. However, these approaches often lead to undesirable consequences, such as reduced adhesion and increased tunneling resistance, ultimately resulting in poor interface quality. A promising solution to overcome these limitations lies in the use of substitutionally doped semiconductor/metal interfaces. We conducted a thorough investigation using first-principles calculations, focusing on S-substituted WS<sub>2</sub>-metal interfaces involving commonly used metals such as Ag, Au, Cu, Pd, Pt, Sc, and Ti. Additionally, we explored the incorporation of nonmetallic dopants, including C, Cl, N, F, O, and P, into the WS<sub>2</sub> surface. Our analysis revolved around several critical parameters, including adhesion strength, Schottky barrier height (SBH), tunnel barrier, charge transfer across the interface, and interface dipole formation. Our study demonstrated that substitutionally doped interfaces can undergo Fermi level depinning while maintaining an enhanced adhesion strength and lower tunneling barrier at the interface. This finding marks a departure from existing methods and offers a promising avenue for inducing p-type contact polarity and addressing contact resistance challenges in TMDs.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c00609\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c00609\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00609","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于在导带极小值附近存在持续的费米级针销(FLP)效应,解决金属与过渡金属二掺杂化合物(TMDs)界面上的接触电阻问题仍然是一项复杂的任务。人们探索了各种方法,通过减少金属与半导体之间的化学作用来减轻费米级钉住效应。然而,这些方法往往会导致不良后果,如附着力降低和隧穿电阻增加,最终导致界面质量低下。要克服这些限制,一种很有前景的解决方案是使用替代掺杂的半导体/金属界面。我们利用第一原理计算进行了深入研究,重点关注 S 取代的 WS2-金属界面,涉及 Ag、Au、Cu、Pd、Pt、Sc 和 Ti 等常用金属。此外,我们还探讨了在 WS2 表面掺入非金属掺杂剂的问题,包括 C、Cl、N、F、O 和 P。我们的分析围绕几个关键参数展开,包括附着强度、肖特基势垒高度(SBH)、隧道势垒、跨界面电荷转移和界面偶极子形成。我们的研究表明,替代掺杂的界面在保持增强的粘附强度和较低的界面隧道势垒的同时,还能发生费米级去稀化。这一发现标志着与现有方法的不同,为在 TMD 中诱导 p 型接触极性和解决接触电阻难题提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substitutional Doping Strategies for Fermi Level Depinning and Enhanced Interface Quality in WS2-Metal Contacts

Addressing contact resistance challenges at the interface between metals and transition-metal dichalcogenides (TMDs) remains a complex task due to the persistent Fermi level pinning (FLP) effect near the conduction band minima. Various methods have been explored to mitigate FLP by reducing the chemical interaction between metals and semiconductors. However, these approaches often lead to undesirable consequences, such as reduced adhesion and increased tunneling resistance, ultimately resulting in poor interface quality. A promising solution to overcome these limitations lies in the use of substitutionally doped semiconductor/metal interfaces. We conducted a thorough investigation using first-principles calculations, focusing on S-substituted WS2-metal interfaces involving commonly used metals such as Ag, Au, Cu, Pd, Pt, Sc, and Ti. Additionally, we explored the incorporation of nonmetallic dopants, including C, Cl, N, F, O, and P, into the WS2 surface. Our analysis revolved around several critical parameters, including adhesion strength, Schottky barrier height (SBH), tunnel barrier, charge transfer across the interface, and interface dipole formation. Our study demonstrated that substitutionally doped interfaces can undergo Fermi level depinning while maintaining an enhanced adhesion strength and lower tunneling barrier at the interface. This finding marks a departure from existing methods and offers a promising avenue for inducing p-type contact polarity and addressing contact resistance challenges in TMDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1