Fatima AL-Shaikh, Abubakr El-Zarrad, Moustafa Ahmed
{"title":"实现用于光动力疗法的高功率连续波和短脉冲半导体激光器:理论工作","authors":"Fatima AL-Shaikh, Abubakr El-Zarrad, Moustafa Ahmed","doi":"10.1007/s10825-024-02177-2","DOIUrl":null,"url":null,"abstract":"<div><p>The semiconductor laser (SCL) is a promising light source in photodynamic therapy (PDT). Overcoming the limitation of the low-penetration depth of PDT and enhancing its therapeutic effect on cancer treatment at a deep level requires enhancing the laser power beyond 100 mW in the CW and/or pulse mode. In this paper, we presented a theoretical guide for designing and optimizing SCL parameters to achieve high CW power and high-power short-time pulses to promote laser performance in PDT. High-power CW output was achieved by optimizing the parameters that control the light–current (L–I) characteristics. Picosecond high-power pulses were predicted based on the simulation of the laser signal under sinusoidal current modulation using the optimized CW parameters along with an appropriate selection of the modulation frequency and index signal class. The characteristics of the laser signal under intensive simulations over wide ranges of modulation frequency and index were used to classify the dynamic types of the laser signal. The operating domain of each of these types was mapped over a (modulation frequency versus index), and bifurcation diagrams were constructed to illustrate the flow among these domains. We spotted the variation of both peak power and pulse width of the periodic pulses with modulation parameters. CW output with power reaching ~ 360 mW was predicted using facet reflectivities of 0.01 and 0.99, cavity length as short as 120 µm, internal loss as small as 100 m<sup>−1</sup>, and confinement factor greater than 0.2. Periodic picosecond pulses with peak power reaching ~ 440 mW were predicted when the modulation index exceeds unity and the modulation frequency is higher than one-half of the relaxation oscillation. The pulse gets narrower with the increase in the modulation index and/or frequency. The obtained results would help design SCL with high power for efficient use in PDT.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 4","pages":"851 - 865"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving high power continuous wave and short pulses of semiconductor laser for use in photodynamic therapy: theoretical work\",\"authors\":\"Fatima AL-Shaikh, Abubakr El-Zarrad, Moustafa Ahmed\",\"doi\":\"10.1007/s10825-024-02177-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The semiconductor laser (SCL) is a promising light source in photodynamic therapy (PDT). Overcoming the limitation of the low-penetration depth of PDT and enhancing its therapeutic effect on cancer treatment at a deep level requires enhancing the laser power beyond 100 mW in the CW and/or pulse mode. In this paper, we presented a theoretical guide for designing and optimizing SCL parameters to achieve high CW power and high-power short-time pulses to promote laser performance in PDT. High-power CW output was achieved by optimizing the parameters that control the light–current (L–I) characteristics. Picosecond high-power pulses were predicted based on the simulation of the laser signal under sinusoidal current modulation using the optimized CW parameters along with an appropriate selection of the modulation frequency and index signal class. The characteristics of the laser signal under intensive simulations over wide ranges of modulation frequency and index were used to classify the dynamic types of the laser signal. The operating domain of each of these types was mapped over a (modulation frequency versus index), and bifurcation diagrams were constructed to illustrate the flow among these domains. We spotted the variation of both peak power and pulse width of the periodic pulses with modulation parameters. CW output with power reaching ~ 360 mW was predicted using facet reflectivities of 0.01 and 0.99, cavity length as short as 120 µm, internal loss as small as 100 m<sup>−1</sup>, and confinement factor greater than 0.2. Periodic picosecond pulses with peak power reaching ~ 440 mW were predicted when the modulation index exceeds unity and the modulation frequency is higher than one-half of the relaxation oscillation. The pulse gets narrower with the increase in the modulation index and/or frequency. The obtained results would help design SCL with high power for efficient use in PDT.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 4\",\"pages\":\"851 - 865\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02177-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02177-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Achieving high power continuous wave and short pulses of semiconductor laser for use in photodynamic therapy: theoretical work
The semiconductor laser (SCL) is a promising light source in photodynamic therapy (PDT). Overcoming the limitation of the low-penetration depth of PDT and enhancing its therapeutic effect on cancer treatment at a deep level requires enhancing the laser power beyond 100 mW in the CW and/or pulse mode. In this paper, we presented a theoretical guide for designing and optimizing SCL parameters to achieve high CW power and high-power short-time pulses to promote laser performance in PDT. High-power CW output was achieved by optimizing the parameters that control the light–current (L–I) characteristics. Picosecond high-power pulses were predicted based on the simulation of the laser signal under sinusoidal current modulation using the optimized CW parameters along with an appropriate selection of the modulation frequency and index signal class. The characteristics of the laser signal under intensive simulations over wide ranges of modulation frequency and index were used to classify the dynamic types of the laser signal. The operating domain of each of these types was mapped over a (modulation frequency versus index), and bifurcation diagrams were constructed to illustrate the flow among these domains. We spotted the variation of both peak power and pulse width of the periodic pulses with modulation parameters. CW output with power reaching ~ 360 mW was predicted using facet reflectivities of 0.01 and 0.99, cavity length as short as 120 µm, internal loss as small as 100 m−1, and confinement factor greater than 0.2. Periodic picosecond pulses with peak power reaching ~ 440 mW were predicted when the modulation index exceeds unity and the modulation frequency is higher than one-half of the relaxation oscillation. The pulse gets narrower with the increase in the modulation index and/or frequency. The obtained results would help design SCL with high power for efficient use in PDT.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.