改进放射学质量控制自动化:利用大型语言模型提取放射学和手术报告中的相关结果。

Niloufar Eghbali, Chad Klochko, Perra Razoky, Prateek Chintalapati, Efan Jawad, Zaid Mahdi, Joseph Craig, Mohammad M Ghassemi
{"title":"改进放射学质量控制自动化:利用大型语言模型提取放射学和手术报告中的相关结果。","authors":"Niloufar Eghbali, Chad Klochko, Perra Razoky, Prateek Chintalapati, Efan Jawad, Zaid Mahdi, Joseph Craig, Mohammad M Ghassemi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Radiology Imaging plays a pivotal role in medical diagnostics, providing clinicians with insights into patient health and guiding the next steps in treatment. The true value of a radiological image lies in the accuracy of its accompanying report. To ensure the reliability of these reports, they are often cross-referenced with operative findings. The conventional method of manually comparing radiology and operative reports is labor-intensive and demands specialized knowledge. This study explores the potential of a Large Language Model (LLM) to simplify the radiology evaluation process by automatically extracting pertinent details from these reports, focusing especially on the shoulder's primary anatomical structures. A fine-tuned LLM identifies mentions of the supraspinatus tendon, infraspinatus tendon, subscapularis tendon, biceps tendon, and glenoid labrum in lengthy radiology and operative documents. Initial findings emphasize the model's capability to pinpoint relevant data, suggesting a transformative approach to the typical evaluation methods in radiology.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141845/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving Automating Quality Control in Radiology: Leveraging Large Language Models to Extract Correlative Findings in Radiology and Operative Reports.\",\"authors\":\"Niloufar Eghbali, Chad Klochko, Perra Razoky, Prateek Chintalapati, Efan Jawad, Zaid Mahdi, Joseph Craig, Mohammad M Ghassemi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiology Imaging plays a pivotal role in medical diagnostics, providing clinicians with insights into patient health and guiding the next steps in treatment. The true value of a radiological image lies in the accuracy of its accompanying report. To ensure the reliability of these reports, they are often cross-referenced with operative findings. The conventional method of manually comparing radiology and operative reports is labor-intensive and demands specialized knowledge. This study explores the potential of a Large Language Model (LLM) to simplify the radiology evaluation process by automatically extracting pertinent details from these reports, focusing especially on the shoulder's primary anatomical structures. A fine-tuned LLM identifies mentions of the supraspinatus tendon, infraspinatus tendon, subscapularis tendon, biceps tendon, and glenoid labrum in lengthy radiology and operative documents. Initial findings emphasize the model's capability to pinpoint relevant data, suggesting a transformative approach to the typical evaluation methods in radiology.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141845/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射成像在医疗诊断中起着举足轻重的作用,它能让临床医生深入了解病人的健康状况,并指导下一步的治疗。放射影像的真正价值在于其随附报告的准确性。为确保这些报告的可靠性,通常需要与手术结果进行交叉对比。人工对比放射报告和手术报告的传统方法需要大量人力和专业知识。本研究探索了大语言模型(LLM)的潜力,通过自动提取这些报告中的相关细节,特别是肩部的主要解剖结构,来简化放射学评估过程。经过微调的 LLM 可以识别冗长的放射学和手术文件中提到的冈上肌腱、冈下肌腱、肩胛下肌腱、肱二头肌肌腱和盂唇。初步发现强调了该模型精确定位相关数据的能力,并建议对放射学中的典型评估方法进行改革。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Automating Quality Control in Radiology: Leveraging Large Language Models to Extract Correlative Findings in Radiology and Operative Reports.

Radiology Imaging plays a pivotal role in medical diagnostics, providing clinicians with insights into patient health and guiding the next steps in treatment. The true value of a radiological image lies in the accuracy of its accompanying report. To ensure the reliability of these reports, they are often cross-referenced with operative findings. The conventional method of manually comparing radiology and operative reports is labor-intensive and demands specialized knowledge. This study explores the potential of a Large Language Model (LLM) to simplify the radiology evaluation process by automatically extracting pertinent details from these reports, focusing especially on the shoulder's primary anatomical structures. A fine-tuned LLM identifies mentions of the supraspinatus tendon, infraspinatus tendon, subscapularis tendon, biceps tendon, and glenoid labrum in lengthy radiology and operative documents. Initial findings emphasize the model's capability to pinpoint relevant data, suggesting a transformative approach to the typical evaluation methods in radiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records. Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1