{"title":"跨域非结构化文档的实用去标识化:利用关系提取过滤的实用性保护方法","authors":"Liubov Nedoshivina, Anisa Halimi, Joao Bettencourt-Silva, Stefano Braghin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The volume of information, and in particular personal information, generated each day is increasing at a staggering rate. The ability to leverage such information depends greatly on being able to satisfy the many compliance and privacy regulations that are appearing all over the world. We present READI, a utility preserving framework for the unstructured document de-identification. READI leverages Named Entity Recognition and Relation Extraction technology to improve the quality of the entity detection, thus improving the overall quality of the data de-identification process. In this proof of concept study, we evaluate the proposed approach on two different datasets and compare with the existing state-of-the-art approaches. We show that Relation Extraction-based Approach for De-Identification (READI) notably reduces the number of false positives and improves the utility of the de-identified text.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"85-94"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141830/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pragmatic De-Identification of Cross-Domain Unstructured Documents: A Utility-Preserving Approach with Relation Extraction Filtering.\",\"authors\":\"Liubov Nedoshivina, Anisa Halimi, Joao Bettencourt-Silva, Stefano Braghin\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The volume of information, and in particular personal information, generated each day is increasing at a staggering rate. The ability to leverage such information depends greatly on being able to satisfy the many compliance and privacy regulations that are appearing all over the world. We present READI, a utility preserving framework for the unstructured document de-identification. READI leverages Named Entity Recognition and Relation Extraction technology to improve the quality of the entity detection, thus improving the overall quality of the data de-identification process. In this proof of concept study, we evaluate the proposed approach on two different datasets and compare with the existing state-of-the-art approaches. We show that Relation Extraction-based Approach for De-Identification (READI) notably reduces the number of false positives and improves the utility of the de-identified text.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2024 \",\"pages\":\"85-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141830/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Pragmatic De-Identification of Cross-Domain Unstructured Documents: A Utility-Preserving Approach with Relation Extraction Filtering.
The volume of information, and in particular personal information, generated each day is increasing at a staggering rate. The ability to leverage such information depends greatly on being able to satisfy the many compliance and privacy regulations that are appearing all over the world. We present READI, a utility preserving framework for the unstructured document de-identification. READI leverages Named Entity Recognition and Relation Extraction technology to improve the quality of the entity detection, thus improving the overall quality of the data de-identification process. In this proof of concept study, we evaluate the proposed approach on two different datasets and compare with the existing state-of-the-art approaches. We show that Relation Extraction-based Approach for De-Identification (READI) notably reduces the number of false positives and improves the utility of the de-identified text.