{"title":"SABER:使用贝叶斯高斯混杂模型统计识别 GWAS 摘要统计中的相关基因位点。","authors":"Rachit Kumar, Rasika Venkatesh, Marylyn D Ritchie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) remain a popular method for identifying novel genetic associations with human phenotypes and have provided many insights into the etiology of many diseases. However, GWAS provide limited support for how a genetic association might contribute to disease due to inherent limitations, such as linkage disequilibrium. As such, many methods that operate on GWAS summary statistics have been developed to generate evidence for functional pathways or for variants of interest, but they require defining the genomic region bounds for loci of interest. At present, there are limited methods for determining these bounds in a rigorous, reproducible way. We present a novel statistical method, Statistical Analysis for Bayesian Estimation of Regions (SABER), that uses Bayesian Gaussian mixture models to reproducibly generate ratios that quantify whether particular genomic positions represent the bounds of loci of interest and can be used to delineate genomic regions for downstream analyses.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"575-583"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141805/pdf/","citationCount":"0","resultStr":"{\"title\":\"SABER: Statistical Identification of Loci of Interest in GWAS Summary Statistics using a Bayesian Gaussian Mixture Model.\",\"authors\":\"Rachit Kumar, Rasika Venkatesh, Marylyn D Ritchie\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies (GWAS) remain a popular method for identifying novel genetic associations with human phenotypes and have provided many insights into the etiology of many diseases. However, GWAS provide limited support for how a genetic association might contribute to disease due to inherent limitations, such as linkage disequilibrium. As such, many methods that operate on GWAS summary statistics have been developed to generate evidence for functional pathways or for variants of interest, but they require defining the genomic region bounds for loci of interest. At present, there are limited methods for determining these bounds in a rigorous, reproducible way. We present a novel statistical method, Statistical Analysis for Bayesian Estimation of Regions (SABER), that uses Bayesian Gaussian mixture models to reproducibly generate ratios that quantify whether particular genomic positions represent the bounds of loci of interest and can be used to delineate genomic regions for downstream analyses.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2024 \",\"pages\":\"575-583\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
SABER: Statistical Identification of Loci of Interest in GWAS Summary Statistics using a Bayesian Gaussian Mixture Model.
Genome-wide association studies (GWAS) remain a popular method for identifying novel genetic associations with human phenotypes and have provided many insights into the etiology of many diseases. However, GWAS provide limited support for how a genetic association might contribute to disease due to inherent limitations, such as linkage disequilibrium. As such, many methods that operate on GWAS summary statistics have been developed to generate evidence for functional pathways or for variants of interest, but they require defining the genomic region bounds for loci of interest. At present, there are limited methods for determining these bounds in a rigorous, reproducible way. We present a novel statistical method, Statistical Analysis for Bayesian Estimation of Regions (SABER), that uses Bayesian Gaussian mixture models to reproducibly generate ratios that quantify whether particular genomic positions represent the bounds of loci of interest and can be used to delineate genomic regions for downstream analyses.