电子病历中的自动家族病史可显著改善风险预测。

Xiayuan Huang, Ross Kleiman, David Page, Scott Hebbring
{"title":"电子病历中的自动家族病史可显著改善风险预测。","authors":"Xiayuan Huang, Ross Kleiman, David Page, Scott Hebbring","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We recently demonstrated that electronically constructed family pedigrees (e-pedigrees) have great value in epidemiologic research using electronic health record (EHR) data. Prior to this work, it has been well accepted that family health history is a major predictor for a wide spectrum of diseases, reflecting shared effects of genetics, environment, and lifestyle. With the widespread digitalization of patient data via EHRs, there is an unprecedented opportunity to use machine learning algorithms to better predict disease risk. Although predictive models have previously been constructed for a few important diseases, we currently know very little about how accurately the risk for most diseases can be predicted. It is further unknown if the incorporation of e-pedigrees in machine learning can improve the value of these models. In this study, we devised a family pedigree-driven high-throughput machine learning pipeline to simultaneously predict risks for thousands of diagnosis codes using thousands of input features. Models were built to predict future disease risk for three time windows using both Logistic Regression and XGBoost. For example, we achieved average areas under the receiver operating characteristic curves (AUCs) of 0.82, 0.77 and 0.71 for 1, 6, and 24 months, respectively using XGBoost and without e-pedigrees. When adding e-pedigree features to the XGBoost pipeline, AUCs increased to 0.83, 0.79 and 0.74 for the same three time periods, respectively. E-pedigrees similarly improved the predictions when using Logistic Regression. These results emphasize the potential value of incorporating family health history via e-pedigrees into machine learning with no further human time.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141855/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated Family Histories Significantly Improve Risk Prediction in an EHR.\",\"authors\":\"Xiayuan Huang, Ross Kleiman, David Page, Scott Hebbring\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We recently demonstrated that electronically constructed family pedigrees (e-pedigrees) have great value in epidemiologic research using electronic health record (EHR) data. Prior to this work, it has been well accepted that family health history is a major predictor for a wide spectrum of diseases, reflecting shared effects of genetics, environment, and lifestyle. With the widespread digitalization of patient data via EHRs, there is an unprecedented opportunity to use machine learning algorithms to better predict disease risk. Although predictive models have previously been constructed for a few important diseases, we currently know very little about how accurately the risk for most diseases can be predicted. It is further unknown if the incorporation of e-pedigrees in machine learning can improve the value of these models. In this study, we devised a family pedigree-driven high-throughput machine learning pipeline to simultaneously predict risks for thousands of diagnosis codes using thousands of input features. Models were built to predict future disease risk for three time windows using both Logistic Regression and XGBoost. For example, we achieved average areas under the receiver operating characteristic curves (AUCs) of 0.82, 0.77 and 0.71 for 1, 6, and 24 months, respectively using XGBoost and without e-pedigrees. When adding e-pedigree features to the XGBoost pipeline, AUCs increased to 0.83, 0.79 and 0.74 for the same three time periods, respectively. E-pedigrees similarly improved the predictions when using Logistic Regression. These results emphasize the potential value of incorporating family health history via e-pedigrees into machine learning with no further human time.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,我们利用电子健康记录(EHR)数据证明了电子构建家系(e-pedigrees)在流行病学研究中的巨大价值。在这项工作之前,家族健康史是多种疾病的主要预测因素,反映了遗传、环境和生活方式的共同影响,这一点已被广泛接受。随着电子病历(EHR)对患者数据的广泛数字化,为使用机器学习算法更好地预测疾病风险提供了前所未有的机会。虽然以前已经针对一些重要疾病建立了预测模型,但我们目前对如何准确预测大多数疾病的风险知之甚少。此外,我们还不知道在机器学习中加入电子病历是否能提高这些模型的价值。在这项研究中,我们设计了一个家系驱动的高通量机器学习管道,利用数千个输入特征同时预测数千个诊断代码的风险。我们利用 Logistic 回归和 XGBoost 建立了预测三个时间窗未来疾病风险的模型。例如,在使用 XGBoost 和不使用电子病历的情况下,我们在 1 个月、6 个月和 24 个月的接收者工作特征曲线下的平均面积(AUC)分别为 0.82、0.77 和 0.71。在 XGBoost 管道中添加电子家谱特征后,相同三个时间段的 AUC 分别增加到 0.83、0.79 和 0.74。在使用逻辑回归时,电子家谱同样提高了预测结果。这些结果凸显了通过电子pedigrees将家族健康史纳入机器学习的潜在价值,而无需花费更多的人力时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Family Histories Significantly Improve Risk Prediction in an EHR.

We recently demonstrated that electronically constructed family pedigrees (e-pedigrees) have great value in epidemiologic research using electronic health record (EHR) data. Prior to this work, it has been well accepted that family health history is a major predictor for a wide spectrum of diseases, reflecting shared effects of genetics, environment, and lifestyle. With the widespread digitalization of patient data via EHRs, there is an unprecedented opportunity to use machine learning algorithms to better predict disease risk. Although predictive models have previously been constructed for a few important diseases, we currently know very little about how accurately the risk for most diseases can be predicted. It is further unknown if the incorporation of e-pedigrees in machine learning can improve the value of these models. In this study, we devised a family pedigree-driven high-throughput machine learning pipeline to simultaneously predict risks for thousands of diagnosis codes using thousands of input features. Models were built to predict future disease risk for three time windows using both Logistic Regression and XGBoost. For example, we achieved average areas under the receiver operating characteristic curves (AUCs) of 0.82, 0.77 and 0.71 for 1, 6, and 24 months, respectively using XGBoost and without e-pedigrees. When adding e-pedigree features to the XGBoost pipeline, AUCs increased to 0.83, 0.79 and 0.74 for the same three time periods, respectively. E-pedigrees similarly improved the predictions when using Logistic Regression. These results emphasize the potential value of incorporating family health history via e-pedigrees into machine learning with no further human time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment. Comparative Analysis of Fusion Strategies for Imaging and Non-imaging Data - Use-case of Hospital Discharge Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1