{"title":"从 MIMIC-IV 数据库自动识别艾滋病病例。","authors":"Kai Jiang, Tru Cao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic HIV phenotyping is needed for HIV research based on electronic health records (EHRs). MIMIC-IV, an extension of MIMIC-III, contains more than 520,000 hospital admissions and has become a valuable EHR database for secondary medical research. However, there was no prior phenotyping algorithm to extract HIV cases from MIMIC-IV, which requires a comprehensive knowledge of the database. Moreover, previous HIV phenotyping algorithms did not consider the new HIV-1/HIV-2 antibody differentiation immunoassay tests that MIMIC-IV contains. Our work provided insight into the structure and data elements in MIMIC-IV and proposed a new HIV phenotyping algorithm to fill in these gaps. The results included MIMIC-IV's data tables and elements used, 1,781 and 1,843 HIV cases from MIMIC-IV's versions 0.4 and 2.1, respectively, and summary statistics of these two HIV case cohorts. They could be used for the development of statistical and machine learning models in future studies about the disease.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"555-564"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated HIV Case Identification from the MIMIC-IV Database.\",\"authors\":\"Kai Jiang, Tru Cao\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic HIV phenotyping is needed for HIV research based on electronic health records (EHRs). MIMIC-IV, an extension of MIMIC-III, contains more than 520,000 hospital admissions and has become a valuable EHR database for secondary medical research. However, there was no prior phenotyping algorithm to extract HIV cases from MIMIC-IV, which requires a comprehensive knowledge of the database. Moreover, previous HIV phenotyping algorithms did not consider the new HIV-1/HIV-2 antibody differentiation immunoassay tests that MIMIC-IV contains. Our work provided insight into the structure and data elements in MIMIC-IV and proposed a new HIV phenotyping algorithm to fill in these gaps. The results included MIMIC-IV's data tables and elements used, 1,781 and 1,843 HIV cases from MIMIC-IV's versions 0.4 and 2.1, respectively, and summary statistics of these two HIV case cohorts. They could be used for the development of statistical and machine learning models in future studies about the disease.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2024 \",\"pages\":\"555-564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基于电子健康记录(EHR)的 HIV 研究需要自动进行 HIV 表型分析。MIMIC-IV 是 MIMIC-III 的延伸,包含 52 万多个住院病例,已成为二次医学研究的重要电子病历数据库。然而,以前没有表型算法从 MIMIC-IV 中提取 HIV 病例,这需要对数据库有全面的了解。此外,以前的 HIV 表型分析算法没有考虑到 MIMIC-IV 所包含的新 HIV-1/HIV-2 抗体分化免疫测定。我们的研究深入了解了 MIMIC-IV 的结构和数据元素,并提出了一种新的 HIV 表型分析算法来填补这些空白。研究结果包括 MIMIC-IV 的数据表和所使用的元素、MIMIC-IV 0.4 和 2.1 版本中分别包含的 1,781 和 1,843 个 HIV 病例,以及这两个 HIV 病例队列的汇总统计数据。这些数据可用于在今后的疾病研究中开发统计和机器学习模型。
Automated HIV Case Identification from the MIMIC-IV Database.
Automatic HIV phenotyping is needed for HIV research based on electronic health records (EHRs). MIMIC-IV, an extension of MIMIC-III, contains more than 520,000 hospital admissions and has become a valuable EHR database for secondary medical research. However, there was no prior phenotyping algorithm to extract HIV cases from MIMIC-IV, which requires a comprehensive knowledge of the database. Moreover, previous HIV phenotyping algorithms did not consider the new HIV-1/HIV-2 antibody differentiation immunoassay tests that MIMIC-IV contains. Our work provided insight into the structure and data elements in MIMIC-IV and proposed a new HIV phenotyping algorithm to fill in these gaps. The results included MIMIC-IV's data tables and elements used, 1,781 and 1,843 HIV cases from MIMIC-IV's versions 0.4 and 2.1, respectively, and summary statistics of these two HIV case cohorts. They could be used for the development of statistical and machine learning models in future studies about the disease.