两全其美:利用基于集合的子群体建模,将 "一个模型适用于所有群体 "和 "特定群体模型 "方法结合起来。

Purity Mugambi, Stephanie Carreiro
{"title":"两全其美:利用基于集合的子群体建模,将 \"一个模型适用于所有群体 \"和 \"特定群体模型 \"方法结合起来。","authors":"Purity Mugambi, Stephanie Carreiro","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Subpopulation models have become of increasing interest in prediction of clinical outcomes because they promise to perform better for underrepresented patient subgroups. However, the personalization benefits gained from these models tradeoff their statistical power, and can be impractical when the subpopulation's sample size is small. We hypothesize that a hierarchical model in which population information is integrated into subpopulation models would preserve the personalization benefits and offset the loss of power. In this work, we integrate ideas from ensemble modeling, personalization, and hierarchical modeling and build ensemble-based subpopulation models in which specialization relies on whole group samples. This approach significantly improves the precision of the positive class, especially for the underrepresented subgroups, with minimal cost to the recall. It consistently outperforms one model for all and one model for each subgroup approaches, especially in the presence of a high class-imbalance, for subgroups with at least 380 training samples.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141864/pdf/","citationCount":"0","resultStr":"{\"title\":\"Best of Both Worlds: Bridging One Model for All and Group-Specific Model Approaches using Ensemble-based Subpopulation Modeling.\",\"authors\":\"Purity Mugambi, Stephanie Carreiro\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subpopulation models have become of increasing interest in prediction of clinical outcomes because they promise to perform better for underrepresented patient subgroups. However, the personalization benefits gained from these models tradeoff their statistical power, and can be impractical when the subpopulation's sample size is small. We hypothesize that a hierarchical model in which population information is integrated into subpopulation models would preserve the personalization benefits and offset the loss of power. In this work, we integrate ideas from ensemble modeling, personalization, and hierarchical modeling and build ensemble-based subpopulation models in which specialization relies on whole group samples. This approach significantly improves the precision of the positive class, especially for the underrepresented subgroups, with minimal cost to the recall. It consistently outperforms one model for all and one model for each subgroup approaches, especially in the presence of a high class-imbalance, for subgroups with at least 380 training samples.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141864/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亚群模型在预测临床结果方面越来越受到关注,因为它们有望为代表性不足的患者亚群提供更好的服务。然而,从这些模型中获得的个性化优势折损了它们的统计能力,而且当亚人群样本量较小时,这些模型可能并不实用。我们假设,将群体信息整合到亚群体模型中的分层模型将保留个性化优势,并抵消统计能力的损失。在这项工作中,我们整合了集合建模、个性化和分层建模的思想,建立了基于集合的子群模型,其中的专业化依赖于整个群体样本。这种方法大大提高了正向类的精确度,尤其是对于代表性不足的子群,而召回率的代价却很小。对于至少有 380 个训练样本的子群来说,它的效果始终优于一个模型适用于所有子群和一个模型适用于每个子群的方法,尤其是在存在高度类不平衡的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Best of Both Worlds: Bridging One Model for All and Group-Specific Model Approaches using Ensemble-based Subpopulation Modeling.

Subpopulation models have become of increasing interest in prediction of clinical outcomes because they promise to perform better for underrepresented patient subgroups. However, the personalization benefits gained from these models tradeoff their statistical power, and can be impractical when the subpopulation's sample size is small. We hypothesize that a hierarchical model in which population information is integrated into subpopulation models would preserve the personalization benefits and offset the loss of power. In this work, we integrate ideas from ensemble modeling, personalization, and hierarchical modeling and build ensemble-based subpopulation models in which specialization relies on whole group samples. This approach significantly improves the precision of the positive class, especially for the underrepresented subgroups, with minimal cost to the recall. It consistently outperforms one model for all and one model for each subgroup approaches, especially in the presence of a high class-imbalance, for subgroups with at least 380 training samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment. Comparative Analysis of Fusion Strategies for Imaging and Non-imaging Data - Use-case of Hospital Discharge Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1