大型语言模型与小众智慧。

Q1 Social Sciences Open Mind Pub Date : 2024-05-20 eCollection Date: 2024-01-01 DOI:10.1162/opmi_a_00144
Sean Trott
{"title":"大型语言模型与小众智慧。","authors":"Sean Trott","doi":"10.1162/opmi_a_00144","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in Large Language Models (LLMs) have raised the question of replacing human subjects with LLM-generated data. While some believe that LLMs capture the \"wisdom of the crowd\"-due to their vast training data-empirical evidence for this hypothesis remains scarce. We present a novel methodological framework to test this: the \"number needed to beat\" (NNB), which measures how many humans are needed for a sample's quality to rival the quality achieved by GPT-4, a state-of-the-art LLM. In a series of pre-registered experiments, we collect novel human data and demonstrate the utility of this method for four psycholinguistic datasets for English. We find that NNB > 1 for each dataset, but also that NNB varies across tasks (and in some cases is quite small, e.g., 2). We also introduce two \"centaur\" methods for combining LLM and human data, which outperform both stand-alone LLMs and human samples. Finally, we analyze the trade-offs in data cost and quality for each approach. While clear limitations remain, we suggest that this framework could guide decision-making about whether and how to integrate LLM-generated data into the research pipeline.</p>","PeriodicalId":32558,"journal":{"name":"Open Mind","volume":"8 ","pages":"723-738"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142632/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large Language Models and the Wisdom of Small Crowds.\",\"authors\":\"Sean Trott\",\"doi\":\"10.1162/opmi_a_00144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in Large Language Models (LLMs) have raised the question of replacing human subjects with LLM-generated data. While some believe that LLMs capture the \\\"wisdom of the crowd\\\"-due to their vast training data-empirical evidence for this hypothesis remains scarce. We present a novel methodological framework to test this: the \\\"number needed to beat\\\" (NNB), which measures how many humans are needed for a sample's quality to rival the quality achieved by GPT-4, a state-of-the-art LLM. In a series of pre-registered experiments, we collect novel human data and demonstrate the utility of this method for four psycholinguistic datasets for English. We find that NNB > 1 for each dataset, but also that NNB varies across tasks (and in some cases is quite small, e.g., 2). We also introduce two \\\"centaur\\\" methods for combining LLM and human data, which outperform both stand-alone LLMs and human samples. Finally, we analyze the trade-offs in data cost and quality for each approach. While clear limitations remain, we suggest that this framework could guide decision-making about whether and how to integrate LLM-generated data into the research pipeline.</p>\",\"PeriodicalId\":32558,\"journal\":{\"name\":\"Open Mind\",\"volume\":\"8 \",\"pages\":\"723-738\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mind\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/opmi_a_00144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mind","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/opmi_a_00144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)的最新进展提出了用 LLM 生成的数据取代人类研究对象的问题。虽然有些人认为 LLMs 可以捕捉到 "群众的智慧"--因为它们拥有大量的训练数据--但这一假设的经验证据仍然很少。我们提出了一个新颖的方法论框架来测试这一点:"需要击败的人数"(NNB),它衡量的是一个样本的质量需要多少人类才能与最先进的 LLM GPT-4 所达到的质量相媲美。在一系列预先注册的实验中,我们收集了新的人类数据,并在四个英语心理语言学数据集上证明了这种方法的实用性。我们发现,每个数据集的 NNB 均大于 1,但不同任务的 NNB 也各不相同(有些任务的 NNB 非常小,例如只有 2)。我们还介绍了两种结合 LLM 和人类数据的 "半人马 "方法,这两种方法都优于独立的 LLM 和人类样本。最后,我们分析了每种方法在数据成本和质量方面的权衡。虽然仍然存在明显的局限性,但我们认为这个框架可以指导决策,决定是否以及如何将 LLM 生成的数据整合到研究流水线中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Language Models and the Wisdom of Small Crowds.

Recent advances in Large Language Models (LLMs) have raised the question of replacing human subjects with LLM-generated data. While some believe that LLMs capture the "wisdom of the crowd"-due to their vast training data-empirical evidence for this hypothesis remains scarce. We present a novel methodological framework to test this: the "number needed to beat" (NNB), which measures how many humans are needed for a sample's quality to rival the quality achieved by GPT-4, a state-of-the-art LLM. In a series of pre-registered experiments, we collect novel human data and demonstrate the utility of this method for four psycholinguistic datasets for English. We find that NNB > 1 for each dataset, but also that NNB varies across tasks (and in some cases is quite small, e.g., 2). We also introduce two "centaur" methods for combining LLM and human data, which outperform both stand-alone LLMs and human samples. Finally, we analyze the trade-offs in data cost and quality for each approach. While clear limitations remain, we suggest that this framework could guide decision-making about whether and how to integrate LLM-generated data into the research pipeline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Mind
Open Mind Social Sciences-Linguistics and Language
CiteScore
3.20
自引率
0.00%
发文量
15
审稿时长
53 weeks
期刊最新文献
Approximating Human-Level 3D Visual Inferences With Deep Neural Networks. Prosodic Cues Support Inferences About the Question's Pedagogical Intent. The Double Standard of Ownership. Combination and Differentiation Theories of Categorization: A Comparison Using Participants' Categorization Descriptions. Investigating Sensitivity to Shared Information and Personal Experience in Children's Use of Majority Information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1