Abheet Singh Sachdeva, Avery Bell, Dr Jacob Furst, Dorothy A Kozlowski, Sonya Crabtree-Nelson, Daniela Raicu
{"title":"利用初始临床报告和机器学习为亲密伴侣暴力患者提供创伤性脑损伤预检工具。","authors":"Abheet Singh Sachdeva, Avery Bell, Dr Jacob Furst, Dorothy A Kozlowski, Sonya Crabtree-Nelson, Daniela Raicu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Research studies have presented an unappreciated relationship between intimate partner violence (IPV) survivors and symptoms of traumatic brain injuries (TBI). Within these IPV survivors, resulting TBIs are not always identified during emergency room visits. This demonstrates a need for a prescreening tool that identifies IPV survivors who should receive TBI screening. We present a model that measures similarities to clinical reports for confirmed TBI cases to identify whether a patient should be screened for TBI. This is done through an ensemble of three supervised learning classifiers which work in two distinct feature spaces. Individual classifiers are trained on clinical reports and then used to create an ensemble that needs only one positive label to indicate a patient should be screened for TBI.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"401-408"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141795/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Traumatic Brain Injury Prescreening Tool for Intimate Partner Violence Patients Using Initial Clinical Reports and Machine Learning.\",\"authors\":\"Abheet Singh Sachdeva, Avery Bell, Dr Jacob Furst, Dorothy A Kozlowski, Sonya Crabtree-Nelson, Daniela Raicu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research studies have presented an unappreciated relationship between intimate partner violence (IPV) survivors and symptoms of traumatic brain injuries (TBI). Within these IPV survivors, resulting TBIs are not always identified during emergency room visits. This demonstrates a need for a prescreening tool that identifies IPV survivors who should receive TBI screening. We present a model that measures similarities to clinical reports for confirmed TBI cases to identify whether a patient should be screened for TBI. This is done through an ensemble of three supervised learning classifiers which work in two distinct feature spaces. Individual classifiers are trained on clinical reports and then used to create an ensemble that needs only one positive label to indicate a patient should be screened for TBI.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2024 \",\"pages\":\"401-408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
A Traumatic Brain Injury Prescreening Tool for Intimate Partner Violence Patients Using Initial Clinical Reports and Machine Learning.
Research studies have presented an unappreciated relationship between intimate partner violence (IPV) survivors and symptoms of traumatic brain injuries (TBI). Within these IPV survivors, resulting TBIs are not always identified during emergency room visits. This demonstrates a need for a prescreening tool that identifies IPV survivors who should receive TBI screening. We present a model that measures similarities to clinical reports for confirmed TBI cases to identify whether a patient should be screened for TBI. This is done through an ensemble of three supervised learning classifiers which work in two distinct feature spaces. Individual classifiers are trained on clinical reports and then used to create an ensemble that needs only one positive label to indicate a patient should be screened for TBI.