Weishen Pan, Chang Su, Jacqueline R M A Maasch, Kun Chen, Claire Henchcliffe, Fei Wang
{"title":"利用纵向临床记录学习帕金森病的表型关联。","authors":"Weishen Pan, Chang Su, Jacqueline R M A Maasch, Kun Chen, Claire Henchcliffe, Fei Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is associated with multiple clinical motor and non-motor manifestations. Understanding of PD etiologies has been informed by a growing number of genetic mutations and various fluid-based and brain imaging biomarkers. However, the mechanisms underlying its varied phenotypic features remain elusive. The present work introduces a data-driven approach for generating phenotypic association graphs for PD cohorts. Data collected by the Parkinson's Progression Markers Initiative (PPMI), the Parkinson's Disease Biomarkers Program (PDBP), and the Fox Investigation for New Discovery of Biomarkers (BioFIND) were analyzed by this approach to identify heterogeneous and longitudinal phenotypic associations that may provide insight into the pathology of this complex disease. Findings based on the phenotypic association graphs could improve understanding of longitudinal PD pathologies and how these relate to patient symptomology.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"374-383"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141836/pdf/","citationCount":"0","resultStr":"{\"title\":\"Learning Phenotypic Associations for Parkinson's Disease with Longitudinal Clinical Records.\",\"authors\":\"Weishen Pan, Chang Su, Jacqueline R M A Maasch, Kun Chen, Claire Henchcliffe, Fei Wang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is associated with multiple clinical motor and non-motor manifestations. Understanding of PD etiologies has been informed by a growing number of genetic mutations and various fluid-based and brain imaging biomarkers. However, the mechanisms underlying its varied phenotypic features remain elusive. The present work introduces a data-driven approach for generating phenotypic association graphs for PD cohorts. Data collected by the Parkinson's Progression Markers Initiative (PPMI), the Parkinson's Disease Biomarkers Program (PDBP), and the Fox Investigation for New Discovery of Biomarkers (BioFIND) were analyzed by this approach to identify heterogeneous and longitudinal phenotypic associations that may provide insight into the pathology of this complex disease. Findings based on the phenotypic association graphs could improve understanding of longitudinal PD pathologies and how these relate to patient symptomology.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2024 \",\"pages\":\"374-383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Phenotypic Associations for Parkinson's Disease with Longitudinal Clinical Records.
Parkinson's disease (PD) is associated with multiple clinical motor and non-motor manifestations. Understanding of PD etiologies has been informed by a growing number of genetic mutations and various fluid-based and brain imaging biomarkers. However, the mechanisms underlying its varied phenotypic features remain elusive. The present work introduces a data-driven approach for generating phenotypic association graphs for PD cohorts. Data collected by the Parkinson's Progression Markers Initiative (PPMI), the Parkinson's Disease Biomarkers Program (PDBP), and the Fox Investigation for New Discovery of Biomarkers (BioFIND) were analyzed by this approach to identify heterogeneous and longitudinal phenotypic associations that may provide insight into the pathology of this complex disease. Findings based on the phenotypic association graphs could improve understanding of longitudinal PD pathologies and how these relate to patient symptomology.