人体肾脏类器官研究的进展与突破

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Biophysics Reports Pub Date : 2024-06-03 DOI:10.1016/j.bbrep.2024.101736
Qi Liu , Liang Yue , Jiu Deng , Yingxia Tan , Chengjun Wu
{"title":"人体肾脏类器官研究的进展与突破","authors":"Qi Liu ,&nbsp;Liang Yue ,&nbsp;Jiu Deng ,&nbsp;Yingxia Tan ,&nbsp;Chengjun Wu","doi":"10.1016/j.bbrep.2024.101736","DOIUrl":null,"url":null,"abstract":"<div><p>The three-dimensional (3D) kidney organoid is a breakthrough model for recapitulating renal morphology and function <em>in vitro</em>, which is grown from stem cells and resembles mammalian kidney organogenesis. Currently, protocols for cultivating this model from induced pluripotent stem cells (iPSCs) and patient-derived adult stem cells (ASCs) have been widely reported. In recent years, scientists have focused on combining cutting-edge bioengineering and bioinformatics technologies to improve the developmental accuracy of kidney organoids and achieve high-throughput experimentation. As a remarkable tool for mechanistic research of the renal system, kidney organoid has both potential and challenges. In this review, we have described the evolution of kidney organoid establishment methods and highlighted the latest progress leading to a more sophisticated kidney transformation research model. Finally, we have summarized the main applications of renal organoids in exploring kidney disease.</p></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405580824001006/pdfft?md5=33917f903eeb2a617c0639b34c5190a2&pid=1-s2.0-S2405580824001006-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Progress and breakthroughs in human kidney organoid research\",\"authors\":\"Qi Liu ,&nbsp;Liang Yue ,&nbsp;Jiu Deng ,&nbsp;Yingxia Tan ,&nbsp;Chengjun Wu\",\"doi\":\"10.1016/j.bbrep.2024.101736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The three-dimensional (3D) kidney organoid is a breakthrough model for recapitulating renal morphology and function <em>in vitro</em>, which is grown from stem cells and resembles mammalian kidney organogenesis. Currently, protocols for cultivating this model from induced pluripotent stem cells (iPSCs) and patient-derived adult stem cells (ASCs) have been widely reported. In recent years, scientists have focused on combining cutting-edge bioengineering and bioinformatics technologies to improve the developmental accuracy of kidney organoids and achieve high-throughput experimentation. As a remarkable tool for mechanistic research of the renal system, kidney organoid has both potential and challenges. In this review, we have described the evolution of kidney organoid establishment methods and highlighted the latest progress leading to a more sophisticated kidney transformation research model. Finally, we have summarized the main applications of renal organoids in exploring kidney disease.</p></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405580824001006/pdfft?md5=33917f903eeb2a617c0639b34c5190a2&pid=1-s2.0-S2405580824001006-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580824001006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824001006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)肾脏器官模型是体外再现肾脏形态和功能的突破性模型,它由干细胞培育而成,与哺乳动物肾脏器官的形成相似。目前,从诱导多能干细胞(iPSCs)和患者来源的成体干细胞(ASCs)培养这种模型的方案已被广泛报道。近年来,科学家们致力于结合尖端的生物工程和生物信息学技术,提高肾脏器官组织的发育精度,实现高通量实验。作为肾脏系统机理研究的重要工具,类肾脏器官组织既有潜力也有挑战。在这篇综述中,我们描述了类肾脏器官建立方法的演变,并重点介绍了建立更复杂的肾脏转化研究模型的最新进展。最后,我们总结了肾脏类器官在探索肾脏疾病方面的主要应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress and breakthroughs in human kidney organoid research

The three-dimensional (3D) kidney organoid is a breakthrough model for recapitulating renal morphology and function in vitro, which is grown from stem cells and resembles mammalian kidney organogenesis. Currently, protocols for cultivating this model from induced pluripotent stem cells (iPSCs) and patient-derived adult stem cells (ASCs) have been widely reported. In recent years, scientists have focused on combining cutting-edge bioengineering and bioinformatics technologies to improve the developmental accuracy of kidney organoids and achieve high-throughput experimentation. As a remarkable tool for mechanistic research of the renal system, kidney organoid has both potential and challenges. In this review, we have described the evolution of kidney organoid establishment methods and highlighted the latest progress leading to a more sophisticated kidney transformation research model. Finally, we have summarized the main applications of renal organoids in exploring kidney disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
期刊最新文献
Epigenetic regulation of the human GDAP1 gene The role of alveolar macrophages in viral respiratory infections and their therapeutic implications Exogenous interactome analysis of bovine viral diarrhea virus-host using network based-approach and identification of hub genes and important pathways involved in virus pathogenesis Oxyresveratrol reduces lipopolysaccharide-induced inflammation and oxidative stress through inactivation of MAPK and NF-κB signaling in brain endothelial cells Development of specific anti-mouse atypical chemokine receptor 4 monoclonal antibodies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1