{"title":"基于生命周期评估评估在混凝土构件生产中采用压铸技术的减碳效益","authors":"Binjie Tang , Huanyu Wu , Yu-Fei Wu","doi":"10.1016/j.resconrec.2024.107733","DOIUrl":null,"url":null,"abstract":"<div><p>Cement is responsible for the high carbon emissions reputation of the concrete industry. To cope with this issue, compression cast technology (CCT) is introduced as a potential low carbon production method for concrete components, as it could reduce the cement consumption and improve the mechanical performance. To evaluate the carbon reduction benefits of adopting the CCT in concrete components production, the Life Cycle Assessment (LCA) method is employed and carbon emissions per unit of compressive strength (CECS, kgCO<sub>2</sub>eq/MPa) is selected as the main indicator. The results indicate that the CECS of concrete with CCT decreased by 21 %-45 % compared to conventional concrete. Considering the carbon reduction benefits of avoiding waste disposal, the CECS of concrete with CCT decreased by 7 %-43 % compared to green concrete using conventional cast technology with similar strengths. If adding waste rubber in concrete with CCT, its CECS could be decreased by 28 %-93 % compared to conventional concrete. If promoting the CCT in the concrete industry, the annual carbon emissions of the global concrete industry can be reduced by 7 %, 14 %, 20 %, and 27 % with replacement ratios 25 %, 50 %, 75 %, and 100 % from 2015 to 2060. The study indicates that implementing the CCT during concrete components production can significantly reduce carbon emissions of the concrete industry and the study provides guidance for carbon reduction efforts in the concrete industry.</p></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"208 ","pages":"Article 107733"},"PeriodicalIF":11.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the carbon reduction benefits of adopting the compression cast technology in concrete components production based on LCA\",\"authors\":\"Binjie Tang , Huanyu Wu , Yu-Fei Wu\",\"doi\":\"10.1016/j.resconrec.2024.107733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cement is responsible for the high carbon emissions reputation of the concrete industry. To cope with this issue, compression cast technology (CCT) is introduced as a potential low carbon production method for concrete components, as it could reduce the cement consumption and improve the mechanical performance. To evaluate the carbon reduction benefits of adopting the CCT in concrete components production, the Life Cycle Assessment (LCA) method is employed and carbon emissions per unit of compressive strength (CECS, kgCO<sub>2</sub>eq/MPa) is selected as the main indicator. The results indicate that the CECS of concrete with CCT decreased by 21 %-45 % compared to conventional concrete. Considering the carbon reduction benefits of avoiding waste disposal, the CECS of concrete with CCT decreased by 7 %-43 % compared to green concrete using conventional cast technology with similar strengths. If adding waste rubber in concrete with CCT, its CECS could be decreased by 28 %-93 % compared to conventional concrete. If promoting the CCT in the concrete industry, the annual carbon emissions of the global concrete industry can be reduced by 7 %, 14 %, 20 %, and 27 % with replacement ratios 25 %, 50 %, 75 %, and 100 % from 2015 to 2060. The study indicates that implementing the CCT during concrete components production can significantly reduce carbon emissions of the concrete industry and the study provides guidance for carbon reduction efforts in the concrete industry.</p></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":\"208 \",\"pages\":\"Article 107733\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344924003276\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924003276","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Evaluation of the carbon reduction benefits of adopting the compression cast technology in concrete components production based on LCA
Cement is responsible for the high carbon emissions reputation of the concrete industry. To cope with this issue, compression cast technology (CCT) is introduced as a potential low carbon production method for concrete components, as it could reduce the cement consumption and improve the mechanical performance. To evaluate the carbon reduction benefits of adopting the CCT in concrete components production, the Life Cycle Assessment (LCA) method is employed and carbon emissions per unit of compressive strength (CECS, kgCO2eq/MPa) is selected as the main indicator. The results indicate that the CECS of concrete with CCT decreased by 21 %-45 % compared to conventional concrete. Considering the carbon reduction benefits of avoiding waste disposal, the CECS of concrete with CCT decreased by 7 %-43 % compared to green concrete using conventional cast technology with similar strengths. If adding waste rubber in concrete with CCT, its CECS could be decreased by 28 %-93 % compared to conventional concrete. If promoting the CCT in the concrete industry, the annual carbon emissions of the global concrete industry can be reduced by 7 %, 14 %, 20 %, and 27 % with replacement ratios 25 %, 50 %, 75 %, and 100 % from 2015 to 2060. The study indicates that implementing the CCT during concrete components production can significantly reduce carbon emissions of the concrete industry and the study provides guidance for carbon reduction efforts in the concrete industry.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.