Yang Jin , Lixin Liu , Zhonglei Duan , Tianzhi Yang
{"title":"非光滑非局部机械二极管","authors":"Yang Jin , Lixin Liu , Zhonglei Duan , Tianzhi Yang","doi":"10.1016/j.ijnonlinmec.2024.104773","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we proposed a new mechanical diode with non-smooth and nonlocal elastic, which support a backflow of the input mechanical energy. It is composed of a nonlinear converter connecting with nonlocal bilinear springs and linear phononic crystal. The asymmetrical stiffness of bilinear springs can be utilized to periodically modulate the stiffness of converter, generate non-reciprocal propagation of mechanical waves, thereby decompose the excitation frequency into multiple sub-bands. Utilizing this characteristic of converter, during the forward propagation of mechanical diodes, it is possible to effectively surpass the cutoff frequency of phononic crystals, ensuring higher energy transmission efficiency and achieving wideband performance of mechanical diodes. Nonlocal connections induce a roton-like dispersion in the wave propagation, resulting in negative group velocities and partial energy backflow. The Runge-Kutta method is utilized to simulate wave propagation and verified by experimental. It is shown that the low-frequency impinging wave is rectified and nearly 100% contrast ratio is observed. Our work provide a new platform for mechanical wave manipulation and energy harvesting.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-smooth nonlocal mechanical diode\",\"authors\":\"Yang Jin , Lixin Liu , Zhonglei Duan , Tianzhi Yang\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we proposed a new mechanical diode with non-smooth and nonlocal elastic, which support a backflow of the input mechanical energy. It is composed of a nonlinear converter connecting with nonlocal bilinear springs and linear phononic crystal. The asymmetrical stiffness of bilinear springs can be utilized to periodically modulate the stiffness of converter, generate non-reciprocal propagation of mechanical waves, thereby decompose the excitation frequency into multiple sub-bands. Utilizing this characteristic of converter, during the forward propagation of mechanical diodes, it is possible to effectively surpass the cutoff frequency of phononic crystals, ensuring higher energy transmission efficiency and achieving wideband performance of mechanical diodes. Nonlocal connections induce a roton-like dispersion in the wave propagation, resulting in negative group velocities and partial energy backflow. The Runge-Kutta method is utilized to simulate wave propagation and verified by experimental. It is shown that the low-frequency impinging wave is rectified and nearly 100% contrast ratio is observed. Our work provide a new platform for mechanical wave manipulation and energy harvesting.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224001380\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224001380","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
In this paper, we proposed a new mechanical diode with non-smooth and nonlocal elastic, which support a backflow of the input mechanical energy. It is composed of a nonlinear converter connecting with nonlocal bilinear springs and linear phononic crystal. The asymmetrical stiffness of bilinear springs can be utilized to periodically modulate the stiffness of converter, generate non-reciprocal propagation of mechanical waves, thereby decompose the excitation frequency into multiple sub-bands. Utilizing this characteristic of converter, during the forward propagation of mechanical diodes, it is possible to effectively surpass the cutoff frequency of phononic crystals, ensuring higher energy transmission efficiency and achieving wideband performance of mechanical diodes. Nonlocal connections induce a roton-like dispersion in the wave propagation, resulting in negative group velocities and partial energy backflow. The Runge-Kutta method is utilized to simulate wave propagation and verified by experimental. It is shown that the low-frequency impinging wave is rectified and nearly 100% contrast ratio is observed. Our work provide a new platform for mechanical wave manipulation and energy harvesting.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.