Daniele Sasso , Francesco Lodato , Anna Sabatini , Giorgio Pennazza , Luca Vollero , Marco Santonico , Mario Merone
{"title":"利用光学和雷达遥感的榛子绘图检测系统:机器学习算法基准测试","authors":"Daniele Sasso , Francesco Lodato , Anna Sabatini , Giorgio Pennazza , Luca Vollero , Marco Santonico , Mario Merone","doi":"10.1016/j.aiia.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Mapping hazelnut orchards can facilitate land planning and utilization policies, supporting the development of cooperative precision farming systems. The present work faces the detection of hazelnut crops using optical and radar remote sensing data. A comparative study of Machine Learning techniques is presented. The system proposed utilizes multi-temporal data from the Sentinel-1 and Sentinel-2 datasets extracted over several years and processed with cloud tools. We provide a dataset of 62,982 labeled samples, with 16,561 samples belonging to the ‘hazelnut’ class and 46,421 samples belonging to the ‘other’ class, collected in 8 heterogeneous geographical areas of the Viterbo province. Two different comparative tests are conducted: firstly, we use a Nested 5-Fold Cross-Validation methodology to train, optimize, and compare different Machine Learning algorithms on a single area. In a second experiment, the algorithms were trained on one area and tested on the remaining seven geographical areas. The developed study demonstrates how AI analysis applied to Sentinel-1 and Sentinel-2 data is a valid technology for hazelnut mapping. From the results, it emerges that Random Forest is the classifier with the highest generalizability, achieving the best performance in the second test with an accuracy of 96% and an F1 score of 91% for the ‘hazelnut’ class.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 97-108"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000163/pdfft?md5=3c0871cbfa7a056adc6aefce898ac420&pid=1-s2.0-S2589721724000163-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hazelnut mapping detection system using optical and radar remote sensing: Benchmarking machine learning algorithms\",\"authors\":\"Daniele Sasso , Francesco Lodato , Anna Sabatini , Giorgio Pennazza , Luca Vollero , Marco Santonico , Mario Merone\",\"doi\":\"10.1016/j.aiia.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mapping hazelnut orchards can facilitate land planning and utilization policies, supporting the development of cooperative precision farming systems. The present work faces the detection of hazelnut crops using optical and radar remote sensing data. A comparative study of Machine Learning techniques is presented. The system proposed utilizes multi-temporal data from the Sentinel-1 and Sentinel-2 datasets extracted over several years and processed with cloud tools. We provide a dataset of 62,982 labeled samples, with 16,561 samples belonging to the ‘hazelnut’ class and 46,421 samples belonging to the ‘other’ class, collected in 8 heterogeneous geographical areas of the Viterbo province. Two different comparative tests are conducted: firstly, we use a Nested 5-Fold Cross-Validation methodology to train, optimize, and compare different Machine Learning algorithms on a single area. In a second experiment, the algorithms were trained on one area and tested on the remaining seven geographical areas. The developed study demonstrates how AI analysis applied to Sentinel-1 and Sentinel-2 data is a valid technology for hazelnut mapping. From the results, it emerges that Random Forest is the classifier with the highest generalizability, achieving the best performance in the second test with an accuracy of 96% and an F1 score of 91% for the ‘hazelnut’ class.</p></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"12 \",\"pages\":\"Pages 97-108\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000163/pdfft?md5=3c0871cbfa7a056adc6aefce898ac420&pid=1-s2.0-S2589721724000163-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hazelnut mapping detection system using optical and radar remote sensing: Benchmarking machine learning algorithms
Mapping hazelnut orchards can facilitate land planning and utilization policies, supporting the development of cooperative precision farming systems. The present work faces the detection of hazelnut crops using optical and radar remote sensing data. A comparative study of Machine Learning techniques is presented. The system proposed utilizes multi-temporal data from the Sentinel-1 and Sentinel-2 datasets extracted over several years and processed with cloud tools. We provide a dataset of 62,982 labeled samples, with 16,561 samples belonging to the ‘hazelnut’ class and 46,421 samples belonging to the ‘other’ class, collected in 8 heterogeneous geographical areas of the Viterbo province. Two different comparative tests are conducted: firstly, we use a Nested 5-Fold Cross-Validation methodology to train, optimize, and compare different Machine Learning algorithms on a single area. In a second experiment, the algorithms were trained on one area and tested on the remaining seven geographical areas. The developed study demonstrates how AI analysis applied to Sentinel-1 and Sentinel-2 data is a valid technology for hazelnut mapping. From the results, it emerges that Random Forest is the classifier with the highest generalizability, achieving the best performance in the second test with an accuracy of 96% and an F1 score of 91% for the ‘hazelnut’ class.