利用欺骗性表面等离子体极化子实现太赫兹指纹传感的高灵敏度和可调谐吸收诱导透明性

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-04-29 DOI:10.1109/JSEN.2024.3392304
Chengcheng Luo;Lin Chen
{"title":"利用欺骗性表面等离子体极化子实现太赫兹指纹传感的高灵敏度和可调谐吸收诱导透明性","authors":"Chengcheng Luo;Lin Chen","doi":"10.1109/JSEN.2024.3392304","DOIUrl":null,"url":null,"abstract":"A spoof surface plasmon polaritons (SSPPs) sensor for enhanced terahertz fingerprint detection is numerically and experimentally demonstrated. As lactose thin film is deposited from a prism surface to spoof plasmon surface, the physical principle of sensing changes from total internal reflection (TIR) to absorption-induced transparency (AIT), which is induced by the coupling between a narrowband molecule vibrational resonance of lactose and broadband spoof plasmonic resonance. The coupling strength of the coupled plasmon-lactose system increases with an increasing thickness of lactose (within the enhanced electrical field decay range). The sensitivity based on the AIT effect of fingerprint detection is four times higher than the TIR effect, where the differential reflectance \n<inline-formula> <tex-math>$\\Delta {R}$ </tex-math></inline-formula>\n is obtained from 22.9% to 45.9% compared to that from 15.3% to 17.3%. \n<inline-formula> <tex-math>$8~\\mu $ </tex-math></inline-formula>\nm lactose film was successfully detected and displayed a clear mode splitting in the experiment. It is noted that the resonant frequency can be tuned from 0.47 to 0.59 THz by easily adjusting the coupling air gap, which can compensate for random fabrication errors. The coupling between spoof plasmonic resonance and molecular vibrational modes provides a new way for studying light-matter interactions and flexible fingerprint detection of different molecules with high sensitivity in the terahertz region.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Sensitive and Tunable Absorption-Induced Transparency for Terahertz Fingerprint Sensing With Spoof Surface Plasmon Polaritons\",\"authors\":\"Chengcheng Luo;Lin Chen\",\"doi\":\"10.1109/JSEN.2024.3392304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spoof surface plasmon polaritons (SSPPs) sensor for enhanced terahertz fingerprint detection is numerically and experimentally demonstrated. As lactose thin film is deposited from a prism surface to spoof plasmon surface, the physical principle of sensing changes from total internal reflection (TIR) to absorption-induced transparency (AIT), which is induced by the coupling between a narrowband molecule vibrational resonance of lactose and broadband spoof plasmonic resonance. The coupling strength of the coupled plasmon-lactose system increases with an increasing thickness of lactose (within the enhanced electrical field decay range). The sensitivity based on the AIT effect of fingerprint detection is four times higher than the TIR effect, where the differential reflectance \\n<inline-formula> <tex-math>$\\\\Delta {R}$ </tex-math></inline-formula>\\n is obtained from 22.9% to 45.9% compared to that from 15.3% to 17.3%. \\n<inline-formula> <tex-math>$8~\\\\mu $ </tex-math></inline-formula>\\nm lactose film was successfully detected and displayed a clear mode splitting in the experiment. It is noted that the resonant frequency can be tuned from 0.47 to 0.59 THz by easily adjusting the coupling air gap, which can compensate for random fabrication errors. The coupling between spoof plasmonic resonance and molecular vibrational modes provides a new way for studying light-matter interactions and flexible fingerprint detection of different molecules with high sensitivity in the terahertz region.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510259/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10510259/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

一种用于增强太赫兹指纹检测的欺骗性表面等离子体极化子(SSPPs)传感器得到了数值和实验验证。当乳糖薄膜从棱镜表面沉积到欺骗性质子表面时,传感的物理原理从全内反射(TIR)转变为吸收诱导透明(AIT),这是由乳糖的窄带分子振动共振和宽带欺骗性质子共振之间的耦合引起的。耦合质子-乳糖系统的耦合强度随着乳糖厚度的增加而增加(在增强电场衰减范围内)。基于 AIT 效应的指纹检测灵敏度比 TIR 效应高四倍,其中差分反射率 $\Delta {R}$ 从 22.9% 到 45.9%,而 TIR 效应从 15.3% 到 17.3%。 8~\mu $ m 乳糖薄膜被成功检测到,并在实验中显示出明显的模式分裂。实验表明,通过调节耦合气隙,共振频率可在 0.47 至 0.59 THz 之间调节,从而弥补了随机制造误差。欺骗性等离子体共振与分子振动模式之间的耦合为研究光-物质相互作用提供了一种新方法,并能在太赫兹区域以高灵敏度灵活地检测不同分子的指纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly Sensitive and Tunable Absorption-Induced Transparency for Terahertz Fingerprint Sensing With Spoof Surface Plasmon Polaritons
A spoof surface plasmon polaritons (SSPPs) sensor for enhanced terahertz fingerprint detection is numerically and experimentally demonstrated. As lactose thin film is deposited from a prism surface to spoof plasmon surface, the physical principle of sensing changes from total internal reflection (TIR) to absorption-induced transparency (AIT), which is induced by the coupling between a narrowband molecule vibrational resonance of lactose and broadband spoof plasmonic resonance. The coupling strength of the coupled plasmon-lactose system increases with an increasing thickness of lactose (within the enhanced electrical field decay range). The sensitivity based on the AIT effect of fingerprint detection is four times higher than the TIR effect, where the differential reflectance $\Delta {R}$ is obtained from 22.9% to 45.9% compared to that from 15.3% to 17.3%. $8~\mu $ m lactose film was successfully detected and displayed a clear mode splitting in the experiment. It is noted that the resonant frequency can be tuned from 0.47 to 0.59 THz by easily adjusting the coupling air gap, which can compensate for random fabrication errors. The coupling between spoof plasmonic resonance and molecular vibrational modes provides a new way for studying light-matter interactions and flexible fingerprint detection of different molecules with high sensitivity in the terahertz region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
Fault Diagnosis of Circuit Breakers Based on MCF-RPs and Deep Residual Knowledge Incremental under Distillation Learning Remaining Useful Life Prediction of Bearings Using Reverse Attention Graph Convolution Network with Residual Convolution Transformer Star Spot Extraction for Multi-FOV Star Sensors Under Extremely High Dynamic Conditions An Ultra-miniaturized Inflammation Monitoring Platform Implemented by Long Afterglow Lat-eral Flow Immunoassay Angle-Agnostic Radio Frequency Sensing Integrated into 5G-NR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1