开发用于腔内超声波成像应用的高频微型凸阵探头

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-04-30 DOI:10.1109/JSEN.2024.3392915
Weicen Chen;Boquan Wang;Jianzhong Chen;Chenzhi You;Jing Yao;Dawei Wu
{"title":"开发用于腔内超声波成像应用的高频微型凸阵探头","authors":"Weicen Chen;Boquan Wang;Jianzhong Chen;Chenzhi You;Jing Yao;Dawei Wu","doi":"10.1109/JSEN.2024.3392915","DOIUrl":null,"url":null,"abstract":"Intraluminal ultrasonic (ILUS) technology, an advanced interventional imaging technique, employs a miniaturized high-frequency ultrasound transducer mounted at the tip of a thin catheter to visualize anatomical structures within the human body. This allows for the acquisition of high-quality images of lesions in close proximity. However, existing ILUS probes predominantly offer specialized visualization in a single direction of the ultrasound catheter due to space constraints within the catheter, posing challenges to the fabrication process. In this study, an ILUS high-frequency mini-convex array probe was developed which featured 64 array elements arranged in a curvilinear configuration, providing a 90° imaging field of view. The mini-convex array was housed within a stainless-steel tube with an outer diameter of 4 mm, positioned such that its central imaging axis was oriented at a 45° angle relative to the axial direction of the tube. This configuration enabled observation of objects ahead of the catheter, even though not entirely covered, and offered detailed features of the interior configuration on its side. This probe exhibited an average center frequency, −6 dB bandwidth, and sensitivity of approximately 17.85 MHz, 61.95%, and 32.64 mV, respectively. Imaging of a wire phantom yielded axial and lateral resolutions at 5 mm depth of approximately 0.11 and 0.25 mm, respectively. Subsequently, the actual imaging capability was assessed through ex vivo imaging of the artery and esophagus of a swine, demonstrating the suitability of the high-frequency mini-convex array probe for ILUS imaging applications.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a High-Frequency Mini-Convex Array Probe for Intraluminal Ultrasonic Imaging Applications\",\"authors\":\"Weicen Chen;Boquan Wang;Jianzhong Chen;Chenzhi You;Jing Yao;Dawei Wu\",\"doi\":\"10.1109/JSEN.2024.3392915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intraluminal ultrasonic (ILUS) technology, an advanced interventional imaging technique, employs a miniaturized high-frequency ultrasound transducer mounted at the tip of a thin catheter to visualize anatomical structures within the human body. This allows for the acquisition of high-quality images of lesions in close proximity. However, existing ILUS probes predominantly offer specialized visualization in a single direction of the ultrasound catheter due to space constraints within the catheter, posing challenges to the fabrication process. In this study, an ILUS high-frequency mini-convex array probe was developed which featured 64 array elements arranged in a curvilinear configuration, providing a 90° imaging field of view. The mini-convex array was housed within a stainless-steel tube with an outer diameter of 4 mm, positioned such that its central imaging axis was oriented at a 45° angle relative to the axial direction of the tube. This configuration enabled observation of objects ahead of the catheter, even though not entirely covered, and offered detailed features of the interior configuration on its side. This probe exhibited an average center frequency, −6 dB bandwidth, and sensitivity of approximately 17.85 MHz, 61.95%, and 32.64 mV, respectively. Imaging of a wire phantom yielded axial and lateral resolutions at 5 mm depth of approximately 0.11 and 0.25 mm, respectively. Subsequently, the actual imaging capability was assessed through ex vivo imaging of the artery and esophagus of a swine, demonstrating the suitability of the high-frequency mini-convex array probe for ILUS imaging applications.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10516286/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10516286/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

腔内超声(ILUS)技术是一种先进的介入成像技术,它利用安装在细导管顶端的微型高频超声换能器来观察人体内的解剖结构。这样就能获得近距离病变的高质量图像。然而,由于导管内的空间限制,现有的 ILUS 探头主要提供超声导管单一方向的专业可视化,这给制造工艺带来了挑战。本研究开发了一种 ILUS 高频微型凸阵探头,其特点是 64 个阵列元件呈曲线配置,可提供 90° 的成像视野。微型凸阵安装在外径为 4 毫米的不锈钢管内,其中心成像轴与管的轴向成 45° 角。这种构造可以观察导管前方的物体,即使没有完全覆盖,也能提供导管侧面内部构造的详细特征。该探头的平均中心频率、-6 dB 带宽和灵敏度分别约为 17.85 MHz、61.95% 和 32.64 mV。对金属丝模型进行成像时,5 毫米深度的轴向和横向分辨率分别约为 0.11 毫米和 0.25 毫米。随后,通过对猪的动脉和食道进行体外成像,对实际成像能力进行了评估,证明了高频微型凸阵探头在 ILUS 成像应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a High-Frequency Mini-Convex Array Probe for Intraluminal Ultrasonic Imaging Applications
Intraluminal ultrasonic (ILUS) technology, an advanced interventional imaging technique, employs a miniaturized high-frequency ultrasound transducer mounted at the tip of a thin catheter to visualize anatomical structures within the human body. This allows for the acquisition of high-quality images of lesions in close proximity. However, existing ILUS probes predominantly offer specialized visualization in a single direction of the ultrasound catheter due to space constraints within the catheter, posing challenges to the fabrication process. In this study, an ILUS high-frequency mini-convex array probe was developed which featured 64 array elements arranged in a curvilinear configuration, providing a 90° imaging field of view. The mini-convex array was housed within a stainless-steel tube with an outer diameter of 4 mm, positioned such that its central imaging axis was oriented at a 45° angle relative to the axial direction of the tube. This configuration enabled observation of objects ahead of the catheter, even though not entirely covered, and offered detailed features of the interior configuration on its side. This probe exhibited an average center frequency, −6 dB bandwidth, and sensitivity of approximately 17.85 MHz, 61.95%, and 32.64 mV, respectively. Imaging of a wire phantom yielded axial and lateral resolutions at 5 mm depth of approximately 0.11 and 0.25 mm, respectively. Subsequently, the actual imaging capability was assessed through ex vivo imaging of the artery and esophagus of a swine, demonstrating the suitability of the high-frequency mini-convex array probe for ILUS imaging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
Fault Diagnosis of Circuit Breakers Based on MCF-RPs and Deep Residual Knowledge Incremental under Distillation Learning Remaining Useful Life Prediction of Bearings Using Reverse Attention Graph Convolution Network with Residual Convolution Transformer Star Spot Extraction for Multi-FOV Star Sensors Under Extremely High Dynamic Conditions An Ultra-miniaturized Inflammation Monitoring Platform Implemented by Long Afterglow Lat-eral Flow Immunoassay Angle-Agnostic Radio Frequency Sensing Integrated into 5G-NR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1