{"title":"对 3-苯氧基苯甲酸及其代谢产物的毒理效应和生物活性进行的硅学研究。","authors":"Hai Duc Nguyen, Thuy Linh Hoang, Giang Huong Vu","doi":"10.1080/00498254.2024.2361457","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to elucidate the toxic effects and biological activities of 3-phenoxybenzoic acid (3PBA) and its metabolite products.</p><p><p>Numerous <i>in silico</i> methods were used to identify the toxic effects and biological activities of 3PBA, including PASS online, molecular docking, ADMETlab 2.0, ADMESWISS, MetaTox, and molecular dynamic simulation.</p><p><p>Ten metabolite products were identified via Phase II reactions (O-glucuronidation, O-sulfation, and methylation).</p><p><p>All of the investigated compounds were followed by Lipinski's rule, indicating that they were stimulants or inducers of hazardous processes.</p><p><p>Because of their high gastrointestinal absorption and ability to reach the blood-brain barrier, the studied compounds' physicochemical and pharmacokinetic properties matched existing evidence of harmful effects, including haematemesis, reproductive dysfunction, allergic dermatitis, toxic respiration, and neurotoxicity.</p><p><p>The studied compounds have been linked to the apoptotic pathway, the reproductivity system, neuroendocrine disruptors, phospholipid-translocating ATPase inhibitors, and JAK2 expression.</p><p><p>An O-glucuronidation metabolite product demonstrated higher binding affinity and interaction with CYP2C9, CYP3A4, caspase 3, and caspase 8 than 3PBA and other metabolite products, whereas metabolite products from methylation were predominant and more toxic.</p><p><p>Our in silico findings partly meet the 3Rs principle by minimizing animal testing before more study is needed to identify the detrimental effects of 3PBA on other organs (liver, kidneys).</p><p><p>Future research directions may involve experimental validation of <i>in silico</i> predictions, elucidation of molecular mechanisms, and exploration of therapeutic interventions.</p><p><p>These findings contribute to our understanding of the toxicological profile of 3PBA and its metabolites, which has implications for risk assessment and regulatory decisions.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"322-341"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An <i>in silico</i> investigation of the toxicological effects and biological activities of 3-phenoxybenzoic acid and its metabolite products.\",\"authors\":\"Hai Duc Nguyen, Thuy Linh Hoang, Giang Huong Vu\",\"doi\":\"10.1080/00498254.2024.2361457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aimed to elucidate the toxic effects and biological activities of 3-phenoxybenzoic acid (3PBA) and its metabolite products.</p><p><p>Numerous <i>in silico</i> methods were used to identify the toxic effects and biological activities of 3PBA, including PASS online, molecular docking, ADMETlab 2.0, ADMESWISS, MetaTox, and molecular dynamic simulation.</p><p><p>Ten metabolite products were identified via Phase II reactions (O-glucuronidation, O-sulfation, and methylation).</p><p><p>All of the investigated compounds were followed by Lipinski's rule, indicating that they were stimulants or inducers of hazardous processes.</p><p><p>Because of their high gastrointestinal absorption and ability to reach the blood-brain barrier, the studied compounds' physicochemical and pharmacokinetic properties matched existing evidence of harmful effects, including haematemesis, reproductive dysfunction, allergic dermatitis, toxic respiration, and neurotoxicity.</p><p><p>The studied compounds have been linked to the apoptotic pathway, the reproductivity system, neuroendocrine disruptors, phospholipid-translocating ATPase inhibitors, and JAK2 expression.</p><p><p>An O-glucuronidation metabolite product demonstrated higher binding affinity and interaction with CYP2C9, CYP3A4, caspase 3, and caspase 8 than 3PBA and other metabolite products, whereas metabolite products from methylation were predominant and more toxic.</p><p><p>Our in silico findings partly meet the 3Rs principle by minimizing animal testing before more study is needed to identify the detrimental effects of 3PBA on other organs (liver, kidneys).</p><p><p>Future research directions may involve experimental validation of <i>in silico</i> predictions, elucidation of molecular mechanisms, and exploration of therapeutic interventions.</p><p><p>These findings contribute to our understanding of the toxicological profile of 3PBA and its metabolites, which has implications for risk assessment and regulatory decisions.</p>\",\"PeriodicalId\":23812,\"journal\":{\"name\":\"Xenobiotica\",\"volume\":\" \",\"pages\":\"322-341\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenobiotica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00498254.2024.2361457\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2361457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
An in silico investigation of the toxicological effects and biological activities of 3-phenoxybenzoic acid and its metabolite products.
We aimed to elucidate the toxic effects and biological activities of 3-phenoxybenzoic acid (3PBA) and its metabolite products.
Numerous in silico methods were used to identify the toxic effects and biological activities of 3PBA, including PASS online, molecular docking, ADMETlab 2.0, ADMESWISS, MetaTox, and molecular dynamic simulation.
Ten metabolite products were identified via Phase II reactions (O-glucuronidation, O-sulfation, and methylation).
All of the investigated compounds were followed by Lipinski's rule, indicating that they were stimulants or inducers of hazardous processes.
Because of their high gastrointestinal absorption and ability to reach the blood-brain barrier, the studied compounds' physicochemical and pharmacokinetic properties matched existing evidence of harmful effects, including haematemesis, reproductive dysfunction, allergic dermatitis, toxic respiration, and neurotoxicity.
The studied compounds have been linked to the apoptotic pathway, the reproductivity system, neuroendocrine disruptors, phospholipid-translocating ATPase inhibitors, and JAK2 expression.
An O-glucuronidation metabolite product demonstrated higher binding affinity and interaction with CYP2C9, CYP3A4, caspase 3, and caspase 8 than 3PBA and other metabolite products, whereas metabolite products from methylation were predominant and more toxic.
Our in silico findings partly meet the 3Rs principle by minimizing animal testing before more study is needed to identify the detrimental effects of 3PBA on other organs (liver, kidneys).
Future research directions may involve experimental validation of in silico predictions, elucidation of molecular mechanisms, and exploration of therapeutic interventions.
These findings contribute to our understanding of the toxicological profile of 3PBA and its metabolites, which has implications for risk assessment and regulatory decisions.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology