时间有序过程的有限和渐近优化

Mirjam Weilenmann, Costantino Budroni, Miguel Navascués
{"title":"时间有序过程的有限和渐近优化","authors":"Mirjam Weilenmann, Costantino Budroni, Miguel Navascués","doi":"10.1103/prxquantum.5.020351","DOIUrl":null,"url":null,"abstract":"Many problems in quantum information theory can be formulated as optimizations over the sequential outcomes of dynamical systems subject to unpredictable external influences. Such problems include many-body entanglement detection through adaptive measurements, computing the maximum average score of a preparation game over a continuous set of target states, and limiting the behavior of a (quantum) finite-state automaton. In this work, we introduce tractable relaxations of this class of optimization problems. To illustrate their performance, we use them to: (a) compute the probability that a finite-state automaton outputs a given sequence of bits; (b) develop a new many-body entanglement-detection protocol; and (c) let the computer <i>invent</i> an adaptive protocol for magic state detection. As we further show, the maximum score of a sequential problem in the limit of infinitely many time steps is in general incomputable. Nonetheless, we provide general heuristics to bound this quantity and show that they provide useful estimates in relevant scenarios.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Time-Ordered Processes in the Finite and Asymptotic Regimes\",\"authors\":\"Mirjam Weilenmann, Costantino Budroni, Miguel Navascués\",\"doi\":\"10.1103/prxquantum.5.020351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many problems in quantum information theory can be formulated as optimizations over the sequential outcomes of dynamical systems subject to unpredictable external influences. Such problems include many-body entanglement detection through adaptive measurements, computing the maximum average score of a preparation game over a continuous set of target states, and limiting the behavior of a (quantum) finite-state automaton. In this work, we introduce tractable relaxations of this class of optimization problems. To illustrate their performance, we use them to: (a) compute the probability that a finite-state automaton outputs a given sequence of bits; (b) develop a new many-body entanglement-detection protocol; and (c) let the computer <i>invent</i> an adaptive protocol for magic state detection. As we further show, the maximum score of a sequential problem in the limit of infinitely many time steps is in general incomputable. Nonetheless, we provide general heuristics to bound this quantity and show that they provide useful estimates in relevant scenarios.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子信息论中的许多问题都可以表述为对受到不可预测的外部影响的动态系统的连续结果进行优化。这类问题包括通过自适应测量进行多体纠缠检测、计算连续目标状态集上准备游戏的最大平均得分,以及限制(量子)有限状态自动机的行为。在这项工作中,我们引入了这类优化问题的可控松弛。为了说明它们的性能,我们用它们来(a) 计算有限状态自动机输出给定比特序列的概率;(b) 开发新的多体纠缠检测协议;(c) 让计算机发明一种自适应的魔态检测协议。正如我们进一步证明的那样,在无限多时间步数的限制下,顺序问题的最大得分一般是无法计算的。不过,我们提供了约束这一数量的一般启发式方法,并证明它们能在相关情况下提供有用的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Time-Ordered Processes in the Finite and Asymptotic Regimes
Many problems in quantum information theory can be formulated as optimizations over the sequential outcomes of dynamical systems subject to unpredictable external influences. Such problems include many-body entanglement detection through adaptive measurements, computing the maximum average score of a preparation game over a continuous set of target states, and limiting the behavior of a (quantum) finite-state automaton. In this work, we introduce tractable relaxations of this class of optimization problems. To illustrate their performance, we use them to: (a) compute the probability that a finite-state automaton outputs a given sequence of bits; (b) develop a new many-body entanglement-detection protocol; and (c) let the computer invent an adaptive protocol for magic state detection. As we further show, the maximum score of a sequential problem in the limit of infinitely many time steps is in general incomputable. Nonetheless, we provide general heuristics to bound this quantity and show that they provide useful estimates in relevant scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1