Tim Delrieux, Shweta Sharma, Florian Maurer, Paolo Dolcet, Maximilian Lausch, Anna Zimina, Camilo Cárdenas, Patrick Lott, Maria Casapu, Thomas Lennon Sheppard and Jan-Dierk Grunwaldt
{"title":"用于优化技术排放控制催化剂的实验室规模快速表征反馈回路","authors":"Tim Delrieux, Shweta Sharma, Florian Maurer, Paolo Dolcet, Maximilian Lausch, Anna Zimina, Camilo Cárdenas, Patrick Lott, Maria Casapu, Thomas Lennon Sheppard and Jan-Dierk Grunwaldt","doi":"10.1039/D4RE00168K","DOIUrl":null,"url":null,"abstract":"<p >Coating of structured substrates like ceramic honeycombs plays an important role in heterogenous gas-phase catalysis. This work aims at understanding the effects of different coating parameters on the activity of a noble metal-based oxidation catalyst by using a novel fast and non-invasive photo-based channel analysis approach. The impact of the milling intensity, binder amount, catalyst layer thickness and distribution in the ceramic cordierite channels were systematically correlated with the activity profiles for CO, methane and propylene oxidation over a 1.8% Pd/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst. High milling intensities led to the formation of thinner catalyst layers with smaller particles, which were more evenly distributed throughout all channels and allowed the reactants to penetrate more efficiently. In contrast, the amount of binder added had a negligible influence on the catalyst activity. These findings were validated by X-ray tomography and complemented by SEM-analysis, a diffuse backlight-illumination imaging method, and mercury intrusion porosimetry.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00168k?page=search","citationCount":"0","resultStr":"{\"title\":\"A laboratory scale fast feedback characterization loop for optimizing coated catalysts for emission control†\",\"authors\":\"Tim Delrieux, Shweta Sharma, Florian Maurer, Paolo Dolcet, Maximilian Lausch, Anna Zimina, Camilo Cárdenas, Patrick Lott, Maria Casapu, Thomas Lennon Sheppard and Jan-Dierk Grunwaldt\",\"doi\":\"10.1039/D4RE00168K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Coating of structured substrates like ceramic honeycombs plays an important role in heterogenous gas-phase catalysis. This work aims at understanding the effects of different coating parameters on the activity of a noble metal-based oxidation catalyst by using a novel fast and non-invasive photo-based channel analysis approach. The impact of the milling intensity, binder amount, catalyst layer thickness and distribution in the ceramic cordierite channels were systematically correlated with the activity profiles for CO, methane and propylene oxidation over a 1.8% Pd/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst. High milling intensities led to the formation of thinner catalyst layers with smaller particles, which were more evenly distributed throughout all channels and allowed the reactants to penetrate more efficiently. In contrast, the amount of binder added had a negligible influence on the catalyst activity. These findings were validated by X-ray tomography and complemented by SEM-analysis, a diffuse backlight-illumination imaging method, and mercury intrusion porosimetry.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00168k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00168k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00168k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
陶瓷蜂窝等结构基底的涂层在异质气相催化中发挥着重要作用。这项工作旨在利用一种新颖的快速、非侵入式光基通道分析方法,了解不同涂层参数对贵金属基氧化催化剂活性的影响。研磨强度、粘合剂用量、催化剂层厚度以及在陶瓷堇青石通道中的分布对 1.8% Pd/Al2O3 催化剂氧化 CO、甲烷和丙烯的活性曲线产生了系统的相关影响。高研磨强度可形成更薄的催化剂层,颗粒更小,更均匀地分布在所有通道中,使反应物更有效地渗透。相比之下,粘合剂的添加量对催化剂活性的影响微乎其微。这些发现得到了 X 射线断层扫描的验证,并得到了扫描电镜分析、漫反射照明成像法和汞侵入孔隙模拟法的补充。
A laboratory scale fast feedback characterization loop for optimizing coated catalysts for emission control†
Coating of structured substrates like ceramic honeycombs plays an important role in heterogenous gas-phase catalysis. This work aims at understanding the effects of different coating parameters on the activity of a noble metal-based oxidation catalyst by using a novel fast and non-invasive photo-based channel analysis approach. The impact of the milling intensity, binder amount, catalyst layer thickness and distribution in the ceramic cordierite channels were systematically correlated with the activity profiles for CO, methane and propylene oxidation over a 1.8% Pd/Al2O3 catalyst. High milling intensities led to the formation of thinner catalyst layers with smaller particles, which were more evenly distributed throughout all channels and allowed the reactants to penetrate more efficiently. In contrast, the amount of binder added had a negligible influence on the catalyst activity. These findings were validated by X-ray tomography and complemented by SEM-analysis, a diffuse backlight-illumination imaging method, and mercury intrusion porosimetry.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.