降低方差抽样重要性重抽样

Yao Xiao, Kang Fu, Kun Li
{"title":"降低方差抽样重要性重抽样","authors":"Yao Xiao, Kang Fu, Kun Li","doi":"arxiv-2406.01864","DOIUrl":null,"url":null,"abstract":"The sampling importance resampling method is widely utilized in various\nfields, such as numerical integration and statistical simulation. In this\npaper, two modified methods are presented by incorporating two variance\nreduction techniques commonly used in Monte Carlo simulation, namely antithetic\nsampling and Latin hypercube sampling, into the process of sampling importance\nresampling method respectively. Theoretical evidence is provided to demonstrate\nthat the proposed methods significantly reduce estimation errors compared to\nthe original approach. Furthermore, the effectiveness and advantages of the\nproposed methods are validated through both numerical studies and real data\nanalysis.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance-reduced sampling importance resampling\",\"authors\":\"Yao Xiao, Kang Fu, Kun Li\",\"doi\":\"arxiv-2406.01864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sampling importance resampling method is widely utilized in various\\nfields, such as numerical integration and statistical simulation. In this\\npaper, two modified methods are presented by incorporating two variance\\nreduction techniques commonly used in Monte Carlo simulation, namely antithetic\\nsampling and Latin hypercube sampling, into the process of sampling importance\\nresampling method respectively. Theoretical evidence is provided to demonstrate\\nthat the proposed methods significantly reduce estimation errors compared to\\nthe original approach. Furthermore, the effectiveness and advantages of the\\nproposed methods are validated through both numerical studies and real data\\nanalysis.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.01864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采样重要性重采样法被广泛应用于数值积分和统计仿真等多个领域。本文提出了两种改进方法,分别将蒙特卡罗仿真中常用的两种降低方差的技术,即反采样和拉丁超立方采样,融入到抽样重要性重采样方法的过程中。理论证据表明,与原始方法相比,所提出的方法大大减少了估计误差。此外,还通过数值研究和实际数据分析验证了所提方法的有效性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variance-reduced sampling importance resampling
The sampling importance resampling method is widely utilized in various fields, such as numerical integration and statistical simulation. In this paper, two modified methods are presented by incorporating two variance reduction techniques commonly used in Monte Carlo simulation, namely antithetic sampling and Latin hypercube sampling, into the process of sampling importance resampling method respectively. Theoretical evidence is provided to demonstrate that the proposed methods significantly reduce estimation errors compared to the original approach. Furthermore, the effectiveness and advantages of the proposed methods are validated through both numerical studies and real data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1