{"title":"临床语音分析的操作化:从功能到措施,实现真实世界的临床影响。","authors":"Julie Liss, Visar Berisha","doi":"10.1044/2024_JSLHR-24-00039","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This research note advocates for a methodological shift in clinical speech analytics, emphasizing the transition from high-dimensional <i>speech feature</i> representations to clinically validated <i>speech measures</i> designed to operationalize clinically relevant constructs of interest. The aim is to enhance model generalizability and clinical applicability in real-world settings.</p><p><strong>Method: </strong>We outline the challenges of using conventional supervised machine learning models in clinical speech analytics, particularly their limited generalizability and interpretability. We propose a new framework focusing on speech measures that are closely tied to specific speech constructs and have undergone rigorous validation. This research note discusses a case study involving the development of a measure for articulatory precision in amyotrophic lateral sclerosis (ALS), detailing the process from ideation through Food and Drug Administration (FDA) breakthrough status designation.</p><p><strong>Results: </strong>The case study demonstrates how the operationalization of the articulatory precision construct into a quantifiable measure yields robust, clinically meaningful results. The measure's validation followed the V3 framework (verification, analytical validation, and clinical validation), showing high correlation with clinical status and speech intelligibility. The practical application of these measures is exemplified in a clinical trial and designation by the FDA as a breakthrough status device, underscoring their real-world impact.</p><p><strong>Conclusions: </strong>Transitioning from speech features to speech measures offers a more targeted approach for developing speech analytics tools in clinical settings. This shift ensures that models are not only technically sound but also clinically relevant and interpretable, thereby bridging the gap between laboratory research and practical health care applications. We encourage further exploration and adoption of this approach for developing interpretable speech representations tailored to specific clinical needs.</p>","PeriodicalId":51254,"journal":{"name":"Journal of Speech Language and Hearing Research","volume":" ","pages":"4226-4232"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operationalizing Clinical Speech Analytics: Moving From Features to Measures for Real-World Clinical Impact.\",\"authors\":\"Julie Liss, Visar Berisha\",\"doi\":\"10.1044/2024_JSLHR-24-00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This research note advocates for a methodological shift in clinical speech analytics, emphasizing the transition from high-dimensional <i>speech feature</i> representations to clinically validated <i>speech measures</i> designed to operationalize clinically relevant constructs of interest. The aim is to enhance model generalizability and clinical applicability in real-world settings.</p><p><strong>Method: </strong>We outline the challenges of using conventional supervised machine learning models in clinical speech analytics, particularly their limited generalizability and interpretability. We propose a new framework focusing on speech measures that are closely tied to specific speech constructs and have undergone rigorous validation. This research note discusses a case study involving the development of a measure for articulatory precision in amyotrophic lateral sclerosis (ALS), detailing the process from ideation through Food and Drug Administration (FDA) breakthrough status designation.</p><p><strong>Results: </strong>The case study demonstrates how the operationalization of the articulatory precision construct into a quantifiable measure yields robust, clinically meaningful results. The measure's validation followed the V3 framework (verification, analytical validation, and clinical validation), showing high correlation with clinical status and speech intelligibility. The practical application of these measures is exemplified in a clinical trial and designation by the FDA as a breakthrough status device, underscoring their real-world impact.</p><p><strong>Conclusions: </strong>Transitioning from speech features to speech measures offers a more targeted approach for developing speech analytics tools in clinical settings. This shift ensures that models are not only technically sound but also clinically relevant and interpretable, thereby bridging the gap between laboratory research and practical health care applications. We encourage further exploration and adoption of this approach for developing interpretable speech representations tailored to specific clinical needs.</p>\",\"PeriodicalId\":51254,\"journal\":{\"name\":\"Journal of Speech Language and Hearing Research\",\"volume\":\" \",\"pages\":\"4226-4232\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Speech Language and Hearing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1044/2024_JSLHR-24-00039\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Speech Language and Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1044/2024_JSLHR-24-00039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Operationalizing Clinical Speech Analytics: Moving From Features to Measures for Real-World Clinical Impact.
Objective: This research note advocates for a methodological shift in clinical speech analytics, emphasizing the transition from high-dimensional speech feature representations to clinically validated speech measures designed to operationalize clinically relevant constructs of interest. The aim is to enhance model generalizability and clinical applicability in real-world settings.
Method: We outline the challenges of using conventional supervised machine learning models in clinical speech analytics, particularly their limited generalizability and interpretability. We propose a new framework focusing on speech measures that are closely tied to specific speech constructs and have undergone rigorous validation. This research note discusses a case study involving the development of a measure for articulatory precision in amyotrophic lateral sclerosis (ALS), detailing the process from ideation through Food and Drug Administration (FDA) breakthrough status designation.
Results: The case study demonstrates how the operationalization of the articulatory precision construct into a quantifiable measure yields robust, clinically meaningful results. The measure's validation followed the V3 framework (verification, analytical validation, and clinical validation), showing high correlation with clinical status and speech intelligibility. The practical application of these measures is exemplified in a clinical trial and designation by the FDA as a breakthrough status device, underscoring their real-world impact.
Conclusions: Transitioning from speech features to speech measures offers a more targeted approach for developing speech analytics tools in clinical settings. This shift ensures that models are not only technically sound but also clinically relevant and interpretable, thereby bridging the gap between laboratory research and practical health care applications. We encourage further exploration and adoption of this approach for developing interpretable speech representations tailored to specific clinical needs.
期刊介绍:
Mission: JSLHR publishes peer-reviewed research and other scholarly articles on the normal and disordered processes in speech, language, hearing, and related areas such as cognition, oral-motor function, and swallowing. The journal is an international outlet for both basic research on communication processes and clinical research pertaining to screening, diagnosis, and management of communication disorders as well as the etiologies and characteristics of these disorders. JSLHR seeks to advance evidence-based practice by disseminating the results of new studies as well as providing a forum for critical reviews and meta-analyses of previously published work.
Scope: The broad field of communication sciences and disorders, including speech production and perception; anatomy and physiology of speech and voice; genetics, biomechanics, and other basic sciences pertaining to human communication; mastication and swallowing; speech disorders; voice disorders; development of speech, language, or hearing in children; normal language processes; language disorders; disorders of hearing and balance; psychoacoustics; and anatomy and physiology of hearing.