Jadranka Milikić, Filipe Gusmão, S. Knežević, N. Gavrilov, Anup Paul, Diogo M. F. Santos, Biljana Šljukić
{"title":"用于氧电极双功能电催化的过渡金属基多氧金属盐","authors":"Jadranka Milikić, Filipe Gusmão, S. Knežević, N. Gavrilov, Anup Paul, Diogo M. F. Santos, Biljana Šljukić","doi":"10.3390/batteries10060197","DOIUrl":null,"url":null,"abstract":"Polyoxometalates (POMs) with transition metals (Co, Cu, Fe, Mn, Ni) of Keggin structure and lamellar-stacked multi-layer morphology were synthesized. They were subsequently explored as bifunctional electrocatalysts for oxygen electrodes, i.e., oxygen reduction (ORR) and evolution (OER) reaction, for aqueous rechargeable metal-air batteries in alkaline media. The lowest Tafel slope (85 mV dec−1) value and the highest OER current density of 93.8 mA cm−2 were obtained for the Fe-POM electrocatalyst. Similar OER electrochemical catalytic activity was noticed for the Co-POM electrocatalyst. This behavior was confirmed by electrochemical impedance spectroscopy, where Fe-POM gave the lowest charge transfer resistance of 3.35 Ω, followed by Co-POM with Rct of 15.04 Ω, during the OER. Additionally, Tafel slope values of 85 and 109 mV dec−1 were calculated for Fe-POM and Co-POM, respectively, during the ORR. The ORR at Fe-POM proceeded by mixed two- and four-electron pathways, while ORR at Co-POM proceeded exclusively by the four-electron pathway. Finally, capacitance studies were conducted on the synthesized POMs.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"29 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition Metal-Based Polyoxometalates for Oxygen Electrode Bifunctional Electrocatalysis\",\"authors\":\"Jadranka Milikić, Filipe Gusmão, S. Knežević, N. Gavrilov, Anup Paul, Diogo M. F. Santos, Biljana Šljukić\",\"doi\":\"10.3390/batteries10060197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyoxometalates (POMs) with transition metals (Co, Cu, Fe, Mn, Ni) of Keggin structure and lamellar-stacked multi-layer morphology were synthesized. They were subsequently explored as bifunctional electrocatalysts for oxygen electrodes, i.e., oxygen reduction (ORR) and evolution (OER) reaction, for aqueous rechargeable metal-air batteries in alkaline media. The lowest Tafel slope (85 mV dec−1) value and the highest OER current density of 93.8 mA cm−2 were obtained for the Fe-POM electrocatalyst. Similar OER electrochemical catalytic activity was noticed for the Co-POM electrocatalyst. This behavior was confirmed by electrochemical impedance spectroscopy, where Fe-POM gave the lowest charge transfer resistance of 3.35 Ω, followed by Co-POM with Rct of 15.04 Ω, during the OER. Additionally, Tafel slope values of 85 and 109 mV dec−1 were calculated for Fe-POM and Co-POM, respectively, during the ORR. The ORR at Fe-POM proceeded by mixed two- and four-electron pathways, while ORR at Co-POM proceeded exclusively by the four-electron pathway. Finally, capacitance studies were conducted on the synthesized POMs.\",\"PeriodicalId\":502356,\"journal\":{\"name\":\"Batteries\",\"volume\":\"29 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10060197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10060197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transition Metal-Based Polyoxometalates for Oxygen Electrode Bifunctional Electrocatalysis
Polyoxometalates (POMs) with transition metals (Co, Cu, Fe, Mn, Ni) of Keggin structure and lamellar-stacked multi-layer morphology were synthesized. They were subsequently explored as bifunctional electrocatalysts for oxygen electrodes, i.e., oxygen reduction (ORR) and evolution (OER) reaction, for aqueous rechargeable metal-air batteries in alkaline media. The lowest Tafel slope (85 mV dec−1) value and the highest OER current density of 93.8 mA cm−2 were obtained for the Fe-POM electrocatalyst. Similar OER electrochemical catalytic activity was noticed for the Co-POM electrocatalyst. This behavior was confirmed by electrochemical impedance spectroscopy, where Fe-POM gave the lowest charge transfer resistance of 3.35 Ω, followed by Co-POM with Rct of 15.04 Ω, during the OER. Additionally, Tafel slope values of 85 and 109 mV dec−1 were calculated for Fe-POM and Co-POM, respectively, during the ORR. The ORR at Fe-POM proceeded by mixed two- and four-electron pathways, while ORR at Co-POM proceeded exclusively by the four-electron pathway. Finally, capacitance studies were conducted on the synthesized POMs.