地下水动态及其污染建模

M.M. Bilaiev, V.V. Kozachyna
{"title":"地下水动态及其污染建模","authors":"M.M. Bilaiev, V.V. Kozachyna","doi":"10.30838/j.bpsacea.2312.260324.137.1052","DOIUrl":null,"url":null,"abstract":"Problem statement. Large accumulators of liquid waste (e.g., mine water ponds, tailing ponds, etc.) are long-term sources that change the hydrological regime. A negative consequence of this process is flooding of the territory. In addition, the infiltration of contaminated water from such hazardous sources changes the quality of groundwater. Therefore, it is important to analyze the impact of such anthropogenic sources on the process of flooding and deterioration of groundwater quality. To solve this problem, it is very important to use the method of mathematical modeling as an effective mean of researching problems of this class, since the use of physical modeling is practically impossible within the scope of problems of this class. The purpose of the article. Development of numerical models for predicting changes in the hydrological regime (flooding of the territory) and groundwater quality under the influence of anthropogenic pollution sources. Methodology. To assess the dynamics of changes in the hydrological regime, a two-dimensional equation of filtration of a non-pressure groundwater flow is used. A two-dimensional geomigration equation (planned model) is used to analyze changes in groundwater quality during infiltration of contaminated water from the settling pond. This equation takes into account the convective transfer of contaminants in the filtration flow, dispersion, and the intensity of contaminant infiltration into the groundwater flow. The method of total approximation is used for numerical integration of the filtration equation. For the numerical integration of the geomigration equation, an implicit splitting scheme is used. Scientific novelty. Effective numerical models for rapid assessment of changes in groundwater dynamics and quality under the influence of anthropogenic sources that change the hydrological regime are proposed. The constructed numerical models take into account a set of important physical factors that affect the process of geomigration and flooding of the territory, namely: filtration coefficient, variable depth of free-flowing groundwater, dispersion, intensity of the source of impurity emission into the groundwater flow. This makes it possible to obtain a comprehensive assessment of the process of flooding and groundwater pollution.. Practical significance. A computer code has been created that allows practical usage of the developed numerical models. This code is an effective tool for theoretical study of non-stationary processes of territory flooding and anthropogenic groundwater pollution. Conclusions. A numerical model for calculating groundwater dynamics has been developed. The model allows to predict the level of groundwater rise under the influence of a man-made source of wastewater infiltration from a settling pond. A numerical model for calculating the process of geomigration from an anthropogenic source of emissions has been developed. The model makes it possible to predict the dynamics of contamination zone formation in a non-pressure groundwater flow. The developed numerical models take into account the most important parameters that affect the formation of flooding zones and groundwater contamination.","PeriodicalId":228894,"journal":{"name":"Ukrainian Journal of Civil Engineering and Architecture","volume":"31 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELING OF GROUND WATER DYNAMICS AND ITS POLLUTION\",\"authors\":\"M.M. Bilaiev, V.V. Kozachyna\",\"doi\":\"10.30838/j.bpsacea.2312.260324.137.1052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problem statement. Large accumulators of liquid waste (e.g., mine water ponds, tailing ponds, etc.) are long-term sources that change the hydrological regime. A negative consequence of this process is flooding of the territory. In addition, the infiltration of contaminated water from such hazardous sources changes the quality of groundwater. Therefore, it is important to analyze the impact of such anthropogenic sources on the process of flooding and deterioration of groundwater quality. To solve this problem, it is very important to use the method of mathematical modeling as an effective mean of researching problems of this class, since the use of physical modeling is practically impossible within the scope of problems of this class. The purpose of the article. Development of numerical models for predicting changes in the hydrological regime (flooding of the territory) and groundwater quality under the influence of anthropogenic pollution sources. Methodology. To assess the dynamics of changes in the hydrological regime, a two-dimensional equation of filtration of a non-pressure groundwater flow is used. A two-dimensional geomigration equation (planned model) is used to analyze changes in groundwater quality during infiltration of contaminated water from the settling pond. This equation takes into account the convective transfer of contaminants in the filtration flow, dispersion, and the intensity of contaminant infiltration into the groundwater flow. The method of total approximation is used for numerical integration of the filtration equation. For the numerical integration of the geomigration equation, an implicit splitting scheme is used. Scientific novelty. Effective numerical models for rapid assessment of changes in groundwater dynamics and quality under the influence of anthropogenic sources that change the hydrological regime are proposed. The constructed numerical models take into account a set of important physical factors that affect the process of geomigration and flooding of the territory, namely: filtration coefficient, variable depth of free-flowing groundwater, dispersion, intensity of the source of impurity emission into the groundwater flow. This makes it possible to obtain a comprehensive assessment of the process of flooding and groundwater pollution.. Practical significance. A computer code has been created that allows practical usage of the developed numerical models. This code is an effective tool for theoretical study of non-stationary processes of territory flooding and anthropogenic groundwater pollution. Conclusions. A numerical model for calculating groundwater dynamics has been developed. The model allows to predict the level of groundwater rise under the influence of a man-made source of wastewater infiltration from a settling pond. A numerical model for calculating the process of geomigration from an anthropogenic source of emissions has been developed. The model makes it possible to predict the dynamics of contamination zone formation in a non-pressure groundwater flow. The developed numerical models take into account the most important parameters that affect the formation of flooding zones and groundwater contamination.\",\"PeriodicalId\":228894,\"journal\":{\"name\":\"Ukrainian Journal of Civil Engineering and Architecture\",\"volume\":\"31 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Journal of Civil Engineering and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30838/j.bpsacea.2312.260324.137.1052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Civil Engineering and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30838/j.bpsacea.2312.260324.137.1052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

问题陈述。液体废物的大型积聚器(如矿井水池、尾矿池等)是改变水文系统的长期来源。这一过程的一个负面影响就是洪水泛滥。此外,从这些危险源渗入的污染水也会改变地下水的水质。因此,分析这些人为污染源对洪水过程和地下水水质恶化的影响非常重要。要解决这个问题,使用数学建模方法作为研究此类问题的有效手段非常重要,因为在此类问题的研究范围内使用物理建模实际上是不可能的。文章的目的建立数值模型,预测人为污染源影响下的水文状况(洪水泛滥)和地下水质量的变化。方法。为了评估水文系统的动态变化,使用了非压力地下水流的二维过滤方程。二维地质迁移方程(规划模型)用于分析沉淀池污染水渗透过程中地下水水质的变化。该方程考虑了过滤流中污染物的对流转移、扩散以及污染物渗入地下水流的强度。过滤方程的数值积分采用全近似法。对于地质迁移方程的数值积分,采用了隐式分割方案。科学新颖性。提出了有效的数值模型,用于快速评估在改变水文系统的人为来源影响下地下水动态和水质的变化。所构建的数值模型考虑到了一系列影响领土地质迁移和洪水过程的重要物理因素,即:过滤系数、自由流动地下水的可变深度、扩散、向地下水流中排放杂质的来源强度。这样就可以对洪水和地下水污染过程进行全面评估。实际意义。已经创建了一个计算机代码,可以实际使用所开发的数值模型。该代码是对领土洪水和人为地下水污染的非稳态过程进行理论研究的有效工具。结论。已开发出一种计算地下水动态的数值模型。该模型可以预测在沉淀池人工废水渗透源影响下的地下水上升水平。开发了一个用于计算人为排放源地质迁移过程的数值模型。该模型可以预测非压力地下水流中污染带的形成动态。所开发的数值模型考虑到了影响淹没区和地下水污染形成的最重要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MODELING OF GROUND WATER DYNAMICS AND ITS POLLUTION
Problem statement. Large accumulators of liquid waste (e.g., mine water ponds, tailing ponds, etc.) are long-term sources that change the hydrological regime. A negative consequence of this process is flooding of the territory. In addition, the infiltration of contaminated water from such hazardous sources changes the quality of groundwater. Therefore, it is important to analyze the impact of such anthropogenic sources on the process of flooding and deterioration of groundwater quality. To solve this problem, it is very important to use the method of mathematical modeling as an effective mean of researching problems of this class, since the use of physical modeling is practically impossible within the scope of problems of this class. The purpose of the article. Development of numerical models for predicting changes in the hydrological regime (flooding of the territory) and groundwater quality under the influence of anthropogenic pollution sources. Methodology. To assess the dynamics of changes in the hydrological regime, a two-dimensional equation of filtration of a non-pressure groundwater flow is used. A two-dimensional geomigration equation (planned model) is used to analyze changes in groundwater quality during infiltration of contaminated water from the settling pond. This equation takes into account the convective transfer of contaminants in the filtration flow, dispersion, and the intensity of contaminant infiltration into the groundwater flow. The method of total approximation is used for numerical integration of the filtration equation. For the numerical integration of the geomigration equation, an implicit splitting scheme is used. Scientific novelty. Effective numerical models for rapid assessment of changes in groundwater dynamics and quality under the influence of anthropogenic sources that change the hydrological regime are proposed. The constructed numerical models take into account a set of important physical factors that affect the process of geomigration and flooding of the territory, namely: filtration coefficient, variable depth of free-flowing groundwater, dispersion, intensity of the source of impurity emission into the groundwater flow. This makes it possible to obtain a comprehensive assessment of the process of flooding and groundwater pollution.. Practical significance. A computer code has been created that allows practical usage of the developed numerical models. This code is an effective tool for theoretical study of non-stationary processes of territory flooding and anthropogenic groundwater pollution. Conclusions. A numerical model for calculating groundwater dynamics has been developed. The model allows to predict the level of groundwater rise under the influence of a man-made source of wastewater infiltration from a settling pond. A numerical model for calculating the process of geomigration from an anthropogenic source of emissions has been developed. The model makes it possible to predict the dynamics of contamination zone formation in a non-pressure groundwater flow. The developed numerical models take into account the most important parameters that affect the formation of flooding zones and groundwater contamination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NEURAL NETWORKS IN ARCHITECTURE: FROM IDEA TO IMPLEMENTATION POSSIBLE CONSTRUCTION FEATURES OF EQUIPMENT FOR RADONOMETRY OF BOTTOM SEDIMENTS ON THE SEA SHELF DURING RESEARCH AT SHORE NPP SITES CALCULATED DETERMINATION OF CHARACTERISTICS OF SHRINKAGE AND TOUCH OF CONCRETE RESEARCH ON THE RELATIONSHIP BETWEEN THE THICKNESS AND THE STRUCTURAL CONDITION OF ROLLED METAL FROM LOW-CARBON LOW-ALLOY STEEL 10G2FB THE INFLUENCE OF THE DEVELOPMENT OF COMPUTER TECHNOLOGIES ON THE PROCESS OF ARCHITECTURAL DESIGN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1