Antonella Corrado, Domenico Magisano, Leonardo Leonetti, Giovanni Garcea
{"title":"夹层玻璃板非线性热机械分析中对温度场强度和分布的敏感性","authors":"Antonella Corrado, Domenico Magisano, Leonardo Leonetti, Giovanni Garcea","doi":"10.1016/j.ijnonlinmec.2024.104792","DOIUrl":null,"url":null,"abstract":"<div><p>Glass laminates consist of stiff glass plies permanently shear-coupled by polymeric interposed layers. When an external temperature rise occurs, the interlayers undergo a dramatic stiffness decay. As a consequence, not only the sectional warping typical of alternating stiff/soft composites is intensified, but also the overall behavior may evolve counter-intuitively. When slender elements prone to geometric nonlinearities are involved, even small thermal variations in intensity or distribution may act as uncertainty factors, strongly affecting the outcome. This paper proposes an efficient, robust, and accurate numerical framework to perform the sensitivity analysis to thermo-mechanical actions in glass plates. A large deformation isogeometric Kirchhoff-Love shell model enriched with through-the-thickness warping is employed, together with a generalized arc-length method involving a suitable temperature parameter as an additional unknown, namely the thermal amplifier or a spatial distribution coefficient. Numerical experiments are presented to highlight the effects that even small temperature variations produce on the equilibrium paths and the influence of the stiffness loss in the interlayer on the structural behavior and the accuracy of the models.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020746224001574/pdfft?md5=34f20b916193798f33529fb1e509f00a&pid=1-s2.0-S0020746224001574-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensitivity to intensity and distribution of the temperature field in the nonlinear thermo-mechanical analysis of laminated glass plates\",\"authors\":\"Antonella Corrado, Domenico Magisano, Leonardo Leonetti, Giovanni Garcea\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glass laminates consist of stiff glass plies permanently shear-coupled by polymeric interposed layers. When an external temperature rise occurs, the interlayers undergo a dramatic stiffness decay. As a consequence, not only the sectional warping typical of alternating stiff/soft composites is intensified, but also the overall behavior may evolve counter-intuitively. When slender elements prone to geometric nonlinearities are involved, even small thermal variations in intensity or distribution may act as uncertainty factors, strongly affecting the outcome. This paper proposes an efficient, robust, and accurate numerical framework to perform the sensitivity analysis to thermo-mechanical actions in glass plates. A large deformation isogeometric Kirchhoff-Love shell model enriched with through-the-thickness warping is employed, together with a generalized arc-length method involving a suitable temperature parameter as an additional unknown, namely the thermal amplifier or a spatial distribution coefficient. Numerical experiments are presented to highlight the effects that even small temperature variations produce on the equilibrium paths and the influence of the stiffness loss in the interlayer on the structural behavior and the accuracy of the models.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020746224001574/pdfft?md5=34f20b916193798f33529fb1e509f00a&pid=1-s2.0-S0020746224001574-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224001574\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224001574","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Sensitivity to intensity and distribution of the temperature field in the nonlinear thermo-mechanical analysis of laminated glass plates
Glass laminates consist of stiff glass plies permanently shear-coupled by polymeric interposed layers. When an external temperature rise occurs, the interlayers undergo a dramatic stiffness decay. As a consequence, not only the sectional warping typical of alternating stiff/soft composites is intensified, but also the overall behavior may evolve counter-intuitively. When slender elements prone to geometric nonlinearities are involved, even small thermal variations in intensity or distribution may act as uncertainty factors, strongly affecting the outcome. This paper proposes an efficient, robust, and accurate numerical framework to perform the sensitivity analysis to thermo-mechanical actions in glass plates. A large deformation isogeometric Kirchhoff-Love shell model enriched with through-the-thickness warping is employed, together with a generalized arc-length method involving a suitable temperature parameter as an additional unknown, namely the thermal amplifier or a spatial distribution coefficient. Numerical experiments are presented to highlight the effects that even small temperature variations produce on the equilibrium paths and the influence of the stiffness loss in the interlayer on the structural behavior and the accuracy of the models.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.