Cong Yin , Shiyang Hua , Wei Nie , Haiyu Yang , Hao Tang
{"title":"采用金属和石墨双极板设计的无人驾驶飞行器空气冷却燃料电池堆比较研究","authors":"Cong Yin , Shiyang Hua , Wei Nie , Haiyu Yang , Hao Tang","doi":"10.1016/j.etran.2024.100344","DOIUrl":null,"url":null,"abstract":"<div><p>The proton exchange membrane fuel cell (PEMFC) power source is a promising solution for the unmanned aerial vehicles (UAVs) to extend the flight endurance. However, the light weighted PEMFC stack design with improved performance remains a critical challenge for the UAVs applications. In this study, two air-cooled PEMFC stacks based on metal and graphite bipolar plates are designed respectively to optimize the fuel cell power density with comparative tests and simulations under varied operating conditions. The designed metal and graphite stacks could reach the power densities of 1189 W/kg and 792 W/kg, of which the graphite one is integrated in a hybrid power system for the UAVs and operated for a flight test with ∼45 min. Validated by the experiment, a three-dimensional coupled model is developed to comparatively study the internal performance and thermal behaviors of the two stacks. Compared with the graphite stack, the metal one outputs higher voltage by 4 %, weighs lighter by 31 % and improves air forced thermal dissipation with enhanced water retention ability. The proposed model and comparative analysis reveal the mechanisms of stack performance variation under different designs and operations, which are beneficial for the optimization of UAVs fuel cell power system.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"21 ","pages":"Article 100344"},"PeriodicalIF":15.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study on air-cooled fuel cell stacks with metal and graphite bipolar plate designs for unmanned aerial vehicles\",\"authors\":\"Cong Yin , Shiyang Hua , Wei Nie , Haiyu Yang , Hao Tang\",\"doi\":\"10.1016/j.etran.2024.100344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proton exchange membrane fuel cell (PEMFC) power source is a promising solution for the unmanned aerial vehicles (UAVs) to extend the flight endurance. However, the light weighted PEMFC stack design with improved performance remains a critical challenge for the UAVs applications. In this study, two air-cooled PEMFC stacks based on metal and graphite bipolar plates are designed respectively to optimize the fuel cell power density with comparative tests and simulations under varied operating conditions. The designed metal and graphite stacks could reach the power densities of 1189 W/kg and 792 W/kg, of which the graphite one is integrated in a hybrid power system for the UAVs and operated for a flight test with ∼45 min. Validated by the experiment, a three-dimensional coupled model is developed to comparatively study the internal performance and thermal behaviors of the two stacks. Compared with the graphite stack, the metal one outputs higher voltage by 4 %, weighs lighter by 31 % and improves air forced thermal dissipation with enhanced water retention ability. The proposed model and comparative analysis reveal the mechanisms of stack performance variation under different designs and operations, which are beneficial for the optimization of UAVs fuel cell power system.</p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"21 \",\"pages\":\"Article 100344\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116824000341\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000341","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Comparative study on air-cooled fuel cell stacks with metal and graphite bipolar plate designs for unmanned aerial vehicles
The proton exchange membrane fuel cell (PEMFC) power source is a promising solution for the unmanned aerial vehicles (UAVs) to extend the flight endurance. However, the light weighted PEMFC stack design with improved performance remains a critical challenge for the UAVs applications. In this study, two air-cooled PEMFC stacks based on metal and graphite bipolar plates are designed respectively to optimize the fuel cell power density with comparative tests and simulations under varied operating conditions. The designed metal and graphite stacks could reach the power densities of 1189 W/kg and 792 W/kg, of which the graphite one is integrated in a hybrid power system for the UAVs and operated for a flight test with ∼45 min. Validated by the experiment, a three-dimensional coupled model is developed to comparatively study the internal performance and thermal behaviors of the two stacks. Compared with the graphite stack, the metal one outputs higher voltage by 4 %, weighs lighter by 31 % and improves air forced thermal dissipation with enhanced water retention ability. The proposed model and comparative analysis reveal the mechanisms of stack performance variation under different designs and operations, which are beneficial for the optimization of UAVs fuel cell power system.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.