S. Makowski, Fabian Härtwig, M. Soldera, Mahmoud Ojeil, L. Lorenz, Frank Kaulfuß, A. Lasagni
{"title":"激光微结构钢基底上沉积的 ta-C/MoSx 涂层在真空和空气中的摩擦学性能得到改善","authors":"S. Makowski, Fabian Härtwig, M. Soldera, Mahmoud Ojeil, L. Lorenz, Frank Kaulfuß, A. Lasagni","doi":"10.3390/lubricants12060200","DOIUrl":null,"url":null,"abstract":"Vacuum and air atmospheres impose very different requirements on tribological-loaded contacts, which usually require different surface materials. While hard tetrahedral amorphous carbon (ta-C) coatings provide good tribological properties in air, soft coatings such as molybdenum disulfide (MoS2) work well in a vacuum. Tribological performance in the respective other environment, however, is poor. In this work, the combination of laser microstructured (direct laser interference patterning) steel substrates and the deposition of ta-C and MoSx coatings with vacuum arc evaporation (LaserArc™) was studied, resulting in steel/DLIP, steel/DLIP/ta-C, steel/DLIP/MoSx, steel/DLIP/ta-C/MoSx, and steel/MoSx surface combinations. The tribological properties were studied using a ball-on-disk tribometer with a steel ball counter body in air and in a vacuum (p < 5 × 10−7 mbar). The type of the topmost coating governed their tribological properties in the respective atmosphere, and no general beneficial influence of the microstructure was found. However, steel/DLIP/ta-C/MoSx performed best in both conditions and endured the highest contact pressure, which is attributed to the mechanical support of the ta-C coating and MoSx reservoir in the remaining structure, as evidenced by Raman spectroscopy. The findings suggest that such combination allows for surfaces bearing a high load capacity that can be applied in both a vacuum and in air, for example, in multi-use space applications.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Tribological Performance of ta-C/MoSx Coatings Deposited on Laser Micro-Structured Steel Substrates in Both Vacuum and Air\",\"authors\":\"S. Makowski, Fabian Härtwig, M. Soldera, Mahmoud Ojeil, L. Lorenz, Frank Kaulfuß, A. Lasagni\",\"doi\":\"10.3390/lubricants12060200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vacuum and air atmospheres impose very different requirements on tribological-loaded contacts, which usually require different surface materials. While hard tetrahedral amorphous carbon (ta-C) coatings provide good tribological properties in air, soft coatings such as molybdenum disulfide (MoS2) work well in a vacuum. Tribological performance in the respective other environment, however, is poor. In this work, the combination of laser microstructured (direct laser interference patterning) steel substrates and the deposition of ta-C and MoSx coatings with vacuum arc evaporation (LaserArc™) was studied, resulting in steel/DLIP, steel/DLIP/ta-C, steel/DLIP/MoSx, steel/DLIP/ta-C/MoSx, and steel/MoSx surface combinations. The tribological properties were studied using a ball-on-disk tribometer with a steel ball counter body in air and in a vacuum (p < 5 × 10−7 mbar). The type of the topmost coating governed their tribological properties in the respective atmosphere, and no general beneficial influence of the microstructure was found. However, steel/DLIP/ta-C/MoSx performed best in both conditions and endured the highest contact pressure, which is attributed to the mechanical support of the ta-C coating and MoSx reservoir in the remaining structure, as evidenced by Raman spectroscopy. The findings suggest that such combination allows for surfaces bearing a high load capacity that can be applied in both a vacuum and in air, for example, in multi-use space applications.\",\"PeriodicalId\":502914,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12060200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12060200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Tribological Performance of ta-C/MoSx Coatings Deposited on Laser Micro-Structured Steel Substrates in Both Vacuum and Air
Vacuum and air atmospheres impose very different requirements on tribological-loaded contacts, which usually require different surface materials. While hard tetrahedral amorphous carbon (ta-C) coatings provide good tribological properties in air, soft coatings such as molybdenum disulfide (MoS2) work well in a vacuum. Tribological performance in the respective other environment, however, is poor. In this work, the combination of laser microstructured (direct laser interference patterning) steel substrates and the deposition of ta-C and MoSx coatings with vacuum arc evaporation (LaserArc™) was studied, resulting in steel/DLIP, steel/DLIP/ta-C, steel/DLIP/MoSx, steel/DLIP/ta-C/MoSx, and steel/MoSx surface combinations. The tribological properties were studied using a ball-on-disk tribometer with a steel ball counter body in air and in a vacuum (p < 5 × 10−7 mbar). The type of the topmost coating governed their tribological properties in the respective atmosphere, and no general beneficial influence of the microstructure was found. However, steel/DLIP/ta-C/MoSx performed best in both conditions and endured the highest contact pressure, which is attributed to the mechanical support of the ta-C coating and MoSx reservoir in the remaining structure, as evidenced by Raman spectroscopy. The findings suggest that such combination allows for surfaces bearing a high load capacity that can be applied in both a vacuum and in air, for example, in multi-use space applications.