Alice F Charteris, Timothy D J Knowles, Andrew Mead, Michaela K Reay, Katerina Michaelides, Richard P Evershed
{"title":"土壤微生物对氮肥化合物的差异同化。","authors":"Alice F Charteris, Timothy D J Knowles, Andrew Mead, Michaela K Reay, Katerina Michaelides, Richard P Evershed","doi":"10.1093/femsle/fnae041","DOIUrl":null,"url":null,"abstract":"<p><p>The differential soil microbial assimilation of common nitrogen (N) fertilizer compounds into the soil organic N pool is revealed using novel compound-specific amino acid (AA) 15N-stable isotope probing. The incorporation of fertilizer 15N into individual AAs reflected the known biochemistry of N assimilation-e.g. 15N-labelled ammonium (15NH4+) was assimilated most quickly and to the greatest extent into glutamate. A maximum of 12.9% of applied 15NH4+, or 11.7% of 'retained' 15NH4+ (remaining in the soil) was assimilated into the total hydrolysable AA pool in the Rowden Moor soil. Incorporation was lowest in the Rowden Moor 15N-labelled nitrate (15NO3-) treatment, at 1.7% of applied 15N or 1.6% of retained 15N. Incorporation in the 15NH4+ and 15NO3- treatments in the Winterbourne Abbas soil, and the 15N-urea treatment in both soils was between 4.4% and 6.5% of applied 15N or 5.2% and 6.4% of retained 15N. This represents a key step in greater comprehension of the microbially mediated transformations of fertilizer N to organic N and contributes to a more complete picture of soil N-cycling. The approach also mechanistically links theoretical/pure culture derived biochemical expectations and bulk level fertilizer immobilization studies, bridging these different scales of understanding.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223579/pdf/","citationCount":"0","resultStr":"{\"title\":\"The differential assimilation of nitrogen fertilizer compounds by soil microorganisms.\",\"authors\":\"Alice F Charteris, Timothy D J Knowles, Andrew Mead, Michaela K Reay, Katerina Michaelides, Richard P Evershed\",\"doi\":\"10.1093/femsle/fnae041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The differential soil microbial assimilation of common nitrogen (N) fertilizer compounds into the soil organic N pool is revealed using novel compound-specific amino acid (AA) 15N-stable isotope probing. The incorporation of fertilizer 15N into individual AAs reflected the known biochemistry of N assimilation-e.g. 15N-labelled ammonium (15NH4+) was assimilated most quickly and to the greatest extent into glutamate. A maximum of 12.9% of applied 15NH4+, or 11.7% of 'retained' 15NH4+ (remaining in the soil) was assimilated into the total hydrolysable AA pool in the Rowden Moor soil. Incorporation was lowest in the Rowden Moor 15N-labelled nitrate (15NO3-) treatment, at 1.7% of applied 15N or 1.6% of retained 15N. Incorporation in the 15NH4+ and 15NO3- treatments in the Winterbourne Abbas soil, and the 15N-urea treatment in both soils was between 4.4% and 6.5% of applied 15N or 5.2% and 6.4% of retained 15N. This represents a key step in greater comprehension of the microbially mediated transformations of fertilizer N to organic N and contributes to a more complete picture of soil N-cycling. The approach also mechanistically links theoretical/pure culture derived biochemical expectations and bulk level fertilizer immobilization studies, bridging these different scales of understanding.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223579/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae041\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
利用新型化合物特异性氨基酸(AA)15N-稳定同位素探针,揭示了土壤微生物将常见氮(N)肥料化合物同化到土壤有机氮库中的差异。肥料 15 N 与单个 AA 的结合反映了已知的氮同化生物化学过程--例如,15N 标记的铵(15NH4+)被同化得最快,并在最大程度上被谷氨酸同化。施用的 15NH4+ 中最多有 12.9% 或 "保留 "的 15NH4+(残留在土壤中)中的 11.7% 被同化到罗登荒原土壤中的可水解 AA 总库中。温特本阿巴斯土壤中 15NH4+ 和 15NO3- 处理以及两种土壤中 15N-脲处理的同化率介于施用 15N 的 4.4% 和 6.5% 之间。这是更深入了解微生物介导的肥料氮向有机氮转化的关键一步,有助于更全面地了解土壤氮循环情况。该方法还从机制上将理论/纯培养衍生的生化预期与大体积肥料固定化研究联系起来,在这些不同的理解范围之间架起了桥梁。
The differential assimilation of nitrogen fertilizer compounds by soil microorganisms.
The differential soil microbial assimilation of common nitrogen (N) fertilizer compounds into the soil organic N pool is revealed using novel compound-specific amino acid (AA) 15N-stable isotope probing. The incorporation of fertilizer 15N into individual AAs reflected the known biochemistry of N assimilation-e.g. 15N-labelled ammonium (15NH4+) was assimilated most quickly and to the greatest extent into glutamate. A maximum of 12.9% of applied 15NH4+, or 11.7% of 'retained' 15NH4+ (remaining in the soil) was assimilated into the total hydrolysable AA pool in the Rowden Moor soil. Incorporation was lowest in the Rowden Moor 15N-labelled nitrate (15NO3-) treatment, at 1.7% of applied 15N or 1.6% of retained 15N. Incorporation in the 15NH4+ and 15NO3- treatments in the Winterbourne Abbas soil, and the 15N-urea treatment in both soils was between 4.4% and 6.5% of applied 15N or 5.2% and 6.4% of retained 15N. This represents a key step in greater comprehension of the microbially mediated transformations of fertilizer N to organic N and contributes to a more complete picture of soil N-cycling. The approach also mechanistically links theoretical/pure culture derived biochemical expectations and bulk level fertilizer immobilization studies, bridging these different scales of understanding.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.