Subramanian Karthikeyan, Tyler Pollock, Mike Walker, Cheryl Khoury, Annie St-Amand
{"title":"加拿大种族人口接触化学品情况分析:基于加拿大健康措施调查的一项研究","authors":"Subramanian Karthikeyan, Tyler Pollock, Mike Walker, Cheryl Khoury, Annie St-Amand","doi":"10.1016/j.ijheh.2024.114406","DOIUrl":null,"url":null,"abstract":"<div><p>Despite demonstrated disparities in environmental chemical exposures by racial identity, no Canadian study has systematically assessed the feasibility of using a nationally representative dataset to examine differences in chemical concentrations by race. We assessed the feasibility and constraints of analysing chemical exposures in racial populations, including visible minorities and populations of Indigenous identity, using biomonitoring data collected through the Canadian Health Measures Survey (CHMS). Our primary objectives were to assess the ability to 1) generate geometric means and percentiles of chemical concentrations for racial populations by age or sex, 2) statistically compare concentrations among racial populations, and 3) calculate time trends of concentrations by race. We conducted these analyses for several priority chemicals: lead, cadmium, benzene, bisphenol A (BPA), and di(2-ethylhexyl) phthalate (DEHP). Survey participants self-identified as one of the following: White, Black, East and Southeast Asian, South Asian, Middle Eastern, Latin American, First Nations, Metis, and Inuit. Analyses were conducted for individual and combined cycles of the CHMS. Using data from the latest CHMS cycle in which each chemical was measured, we observed that sample sizes were sufficient to report geometric mean concentrations for all races except Inuit. Due to privacy considerations associated with small sample sizes, the 5th and 95th percentile concentrations could not be consistently reported for all racial populations in this analysis. While we were able to statistically compare concentrations among racial populations, the analysis was constrained by the limited number of statistical degrees of freedom available in a single CHMS cycle. Both of these constraints were alleviated by combining multiple cycles of data. The analysis of time trends was less subject to privacy and statistical limitations; we were able to calculate time trends of chemical concentrations for all racial populations. Our findings provide an important baseline for follow-up investigations of descriptive and etiological analyses of environmental chemical exposures and race in the CHMS.</p></div>","PeriodicalId":13994,"journal":{"name":"International journal of hygiene and environmental health","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1438463924000877/pdfft?md5=c8855c67a321a8f80be651d479c4a0b4&pid=1-s2.0-S1438463924000877-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of chemical exposures in racial populations in Canada: An investigation based on the Canadian health measures survey\",\"authors\":\"Subramanian Karthikeyan, Tyler Pollock, Mike Walker, Cheryl Khoury, Annie St-Amand\",\"doi\":\"10.1016/j.ijheh.2024.114406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite demonstrated disparities in environmental chemical exposures by racial identity, no Canadian study has systematically assessed the feasibility of using a nationally representative dataset to examine differences in chemical concentrations by race. We assessed the feasibility and constraints of analysing chemical exposures in racial populations, including visible minorities and populations of Indigenous identity, using biomonitoring data collected through the Canadian Health Measures Survey (CHMS). Our primary objectives were to assess the ability to 1) generate geometric means and percentiles of chemical concentrations for racial populations by age or sex, 2) statistically compare concentrations among racial populations, and 3) calculate time trends of concentrations by race. We conducted these analyses for several priority chemicals: lead, cadmium, benzene, bisphenol A (BPA), and di(2-ethylhexyl) phthalate (DEHP). Survey participants self-identified as one of the following: White, Black, East and Southeast Asian, South Asian, Middle Eastern, Latin American, First Nations, Metis, and Inuit. Analyses were conducted for individual and combined cycles of the CHMS. Using data from the latest CHMS cycle in which each chemical was measured, we observed that sample sizes were sufficient to report geometric mean concentrations for all races except Inuit. Due to privacy considerations associated with small sample sizes, the 5th and 95th percentile concentrations could not be consistently reported for all racial populations in this analysis. While we were able to statistically compare concentrations among racial populations, the analysis was constrained by the limited number of statistical degrees of freedom available in a single CHMS cycle. Both of these constraints were alleviated by combining multiple cycles of data. The analysis of time trends was less subject to privacy and statistical limitations; we were able to calculate time trends of chemical concentrations for all racial populations. Our findings provide an important baseline for follow-up investigations of descriptive and etiological analyses of environmental chemical exposures and race in the CHMS.</p></div>\",\"PeriodicalId\":13994,\"journal\":{\"name\":\"International journal of hygiene and environmental health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1438463924000877/pdfft?md5=c8855c67a321a8f80be651d479c4a0b4&pid=1-s2.0-S1438463924000877-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of hygiene and environmental health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1438463924000877\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hygiene and environmental health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438463924000877","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Analysis of chemical exposures in racial populations in Canada: An investigation based on the Canadian health measures survey
Despite demonstrated disparities in environmental chemical exposures by racial identity, no Canadian study has systematically assessed the feasibility of using a nationally representative dataset to examine differences in chemical concentrations by race. We assessed the feasibility and constraints of analysing chemical exposures in racial populations, including visible minorities and populations of Indigenous identity, using biomonitoring data collected through the Canadian Health Measures Survey (CHMS). Our primary objectives were to assess the ability to 1) generate geometric means and percentiles of chemical concentrations for racial populations by age or sex, 2) statistically compare concentrations among racial populations, and 3) calculate time trends of concentrations by race. We conducted these analyses for several priority chemicals: lead, cadmium, benzene, bisphenol A (BPA), and di(2-ethylhexyl) phthalate (DEHP). Survey participants self-identified as one of the following: White, Black, East and Southeast Asian, South Asian, Middle Eastern, Latin American, First Nations, Metis, and Inuit. Analyses were conducted for individual and combined cycles of the CHMS. Using data from the latest CHMS cycle in which each chemical was measured, we observed that sample sizes were sufficient to report geometric mean concentrations for all races except Inuit. Due to privacy considerations associated with small sample sizes, the 5th and 95th percentile concentrations could not be consistently reported for all racial populations in this analysis. While we were able to statistically compare concentrations among racial populations, the analysis was constrained by the limited number of statistical degrees of freedom available in a single CHMS cycle. Both of these constraints were alleviated by combining multiple cycles of data. The analysis of time trends was less subject to privacy and statistical limitations; we were able to calculate time trends of chemical concentrations for all racial populations. Our findings provide an important baseline for follow-up investigations of descriptive and etiological analyses of environmental chemical exposures and race in the CHMS.
期刊介绍:
The International Journal of Hygiene and Environmental Health serves as a multidisciplinary forum for original reports on exposure assessment and the reactions to and consequences of human exposure to the biological, chemical, and physical environment. Research reports, short communications, reviews, scientific comments, technical notes, and editorials will be peer-reviewed before acceptance for publication. Priority will be given to articles on epidemiological aspects of environmental toxicology, health risk assessments, susceptible (sub) populations, sanitation and clean water, human biomonitoring, environmental medicine, and public health aspects of exposure-related outcomes.