{"title":"重新评估 TRP 通道机械敏感性","authors":"","doi":"10.1016/j.tibs.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Transient receptor potential (TRP) channels are implicated in a wide array of mechanotransduction processes. However, a question remains whether TRP channels directly sense mechanical force, thus acting as primary mechanotransducers. We use several recent examples to demonstrate the difficulty in definitively ascribing mechanosensitivity to TRP channel subfamilies. Ultimately, despite being implicated in an ever-growing list of mechanosignalling events in most cases limited robust or reproducible evidence supports the contention that TRP channels act as primary transducers of mechanical forces. They either (i) possess unique and as yet unspecified structural or local requirements for mechanosensitivity; or (ii) act as mechanoamplifiers responding downstream of the activation of a primary mechanotransducer that could include Ca<sup>2+</sup>-permeable mechanosensitive (MS) channels or other potentially unidentified mechanosensors.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 8","pages":"Pages 693-702"},"PeriodicalIF":11.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968000424001142/pdfft?md5=09b13a76b3c80b1fc631d78be848548c&pid=1-s2.0-S0968000424001142-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Re-evaluating TRP channel mechanosensitivity\",\"authors\":\"\",\"doi\":\"10.1016/j.tibs.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transient receptor potential (TRP) channels are implicated in a wide array of mechanotransduction processes. However, a question remains whether TRP channels directly sense mechanical force, thus acting as primary mechanotransducers. We use several recent examples to demonstrate the difficulty in definitively ascribing mechanosensitivity to TRP channel subfamilies. Ultimately, despite being implicated in an ever-growing list of mechanosignalling events in most cases limited robust or reproducible evidence supports the contention that TRP channels act as primary transducers of mechanical forces. They either (i) possess unique and as yet unspecified structural or local requirements for mechanosensitivity; or (ii) act as mechanoamplifiers responding downstream of the activation of a primary mechanotransducer that could include Ca<sup>2+</sup>-permeable mechanosensitive (MS) channels or other potentially unidentified mechanosensors.</p></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"49 8\",\"pages\":\"Pages 693-702\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0968000424001142/pdfft?md5=09b13a76b3c80b1fc631d78be848548c&pid=1-s2.0-S0968000424001142-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968000424001142\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424001142","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transient receptor potential (TRP) channels are implicated in a wide array of mechanotransduction processes. However, a question remains whether TRP channels directly sense mechanical force, thus acting as primary mechanotransducers. We use several recent examples to demonstrate the difficulty in definitively ascribing mechanosensitivity to TRP channel subfamilies. Ultimately, despite being implicated in an ever-growing list of mechanosignalling events in most cases limited robust or reproducible evidence supports the contention that TRP channels act as primary transducers of mechanical forces. They either (i) possess unique and as yet unspecified structural or local requirements for mechanosensitivity; or (ii) act as mechanoamplifiers responding downstream of the activation of a primary mechanotransducer that could include Ca2+-permeable mechanosensitive (MS) channels or other potentially unidentified mechanosensors.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.