Lauren F Cole-Osborn, Emma Meehan, Carolyn W T Lee-Parsons
{"title":"农杆菌介导的瞬时转化和定量启动子检测的关键参数。","authors":"Lauren F Cole-Osborn, Emma Meehan, Carolyn W T Lee-Parsons","doi":"10.1002/pld3.596","DOIUrl":null,"url":null,"abstract":"<p><p><i>Agrobacterium</i>-mediated transient expression methods are widely used to study gene function in both model and non-model plants. Using a dual-luciferase assay, we quantified the effect of <i>Agrobacterium</i>-infiltration parameters on the transient transformation efficiency of <i>Catharanthus roseus</i> seedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre- and post-infiltration dark incubation and is less sensitive to the <i>Agrobacterium</i> growth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven- to eight-fold while a dark incubation pre- and post-infiltration increased transformation efficiency by five- to 13-fold. <i>Agrobacterium</i> in exponential compared with stationary phase increased transformation efficiency by two-fold. Finally, we quantified the variation in our <i>Agrobacterium</i>-infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6-fold in raw firefly luciferase (<i>FLUC</i>) and raw <i>Renilla</i> luciferase (<i>RLUC</i>) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation of <i>Agrobacterium</i> infiltration in <i>C. roseus</i> seedlings will facilitate the study of this important medicinal plant and will expand the application of <i>Agrobacterium</i>-mediated transformation methods in other plant species.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 6","pages":"e596"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154794/pdf/","citationCount":"0","resultStr":"{\"title\":\"Critical parameters for robust <i>Agrobacterium</i>-mediated transient transformation and quantitative promoter assays in <i>Catharanthus roseus</i> seedlings.\",\"authors\":\"Lauren F Cole-Osborn, Emma Meehan, Carolyn W T Lee-Parsons\",\"doi\":\"10.1002/pld3.596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Agrobacterium</i>-mediated transient expression methods are widely used to study gene function in both model and non-model plants. Using a dual-luciferase assay, we quantified the effect of <i>Agrobacterium</i>-infiltration parameters on the transient transformation efficiency of <i>Catharanthus roseus</i> seedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre- and post-infiltration dark incubation and is less sensitive to the <i>Agrobacterium</i> growth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven- to eight-fold while a dark incubation pre- and post-infiltration increased transformation efficiency by five- to 13-fold. <i>Agrobacterium</i> in exponential compared with stationary phase increased transformation efficiency by two-fold. Finally, we quantified the variation in our <i>Agrobacterium</i>-infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6-fold in raw firefly luciferase (<i>FLUC</i>) and raw <i>Renilla</i> luciferase (<i>RLUC</i>) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation of <i>Agrobacterium</i> infiltration in <i>C. roseus</i> seedlings will facilitate the study of this important medicinal plant and will expand the application of <i>Agrobacterium</i>-mediated transformation methods in other plant species.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"8 6\",\"pages\":\"e596\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154794/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.596\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.596","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Critical parameters for robust Agrobacterium-mediated transient transformation and quantitative promoter assays in Catharanthus roseus seedlings.
Agrobacterium-mediated transient expression methods are widely used to study gene function in both model and non-model plants. Using a dual-luciferase assay, we quantified the effect of Agrobacterium-infiltration parameters on the transient transformation efficiency of Catharanthus roseus seedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre- and post-infiltration dark incubation and is less sensitive to the Agrobacterium growth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven- to eight-fold while a dark incubation pre- and post-infiltration increased transformation efficiency by five- to 13-fold. Agrobacterium in exponential compared with stationary phase increased transformation efficiency by two-fold. Finally, we quantified the variation in our Agrobacterium-infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6-fold in raw firefly luciferase (FLUC) and raw Renilla luciferase (RLUC) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation of Agrobacterium infiltration in C. roseus seedlings will facilitate the study of this important medicinal plant and will expand the application of Agrobacterium-mediated transformation methods in other plant species.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.