紫外线过滤器二苯甲酮-2:对斑马鱼(Danio rerio)细胞色素 P450 的影响

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2024-05-27 DOI:10.1016/j.aquatox.2024.106973
Ileska M. Casiano-Muñiz, Melissa I. Ortiz-Román, José A. Carmona-Negrón, Félix R. Román-Velázquez
{"title":"紫外线过滤器二苯甲酮-2:对斑马鱼(Danio rerio)细胞色素 P450 的影响","authors":"Ileska M. Casiano-Muñiz,&nbsp;Melissa I. Ortiz-Román,&nbsp;José A. Carmona-Negrón,&nbsp;Félix R. Román-Velázquez","doi":"10.1016/j.aquatox.2024.106973","DOIUrl":null,"url":null,"abstract":"<div><p>Benzophenone-2 (2,2′, 4,4′- Tetrahydroxybenzophenone; BP-2) is widely used as a sunscreen in Personal and Care Products (PCPs) for protection against ultraviolet (UV) radiation. The effects of BP-2 on random-sex adult zebrafish (<em>Danio rerio)</em> cytochrome P450 (CYP450) were studied. The main goal was to investigate the detoxification mechanisms underlying the adverse consequences of exposure to xenobiotic chemicals such as BP-2. Total protein content, CYP450 content, and erythromycin N-demethylase (ERND) activity were evaluated as indicators of protein CYP3A expression. Five sets of pooled random-sex adult zebrafish were exposed to 0.0, 0.1, 5.0, and 10.0 mg/L of BP-2 to evaluate their acute and chronic toxicity (4 and 15 days, respectively). ERND activity was significantly increased in the chronic toxicity group compared to that in the control group, whereas CYP450 remained unchanged. The results suggest a sufficiently fast catalytic process that does not alter the total CYP450 content. It implies a mediation of CYP450 3A induction by BP-2 and the pregnane X receptor ligand-binding domain (PXR LBD) interaction. Ligand-protein interactions were confirmed via <em>in silico</em> docking with AutoDock Vina. Further computational studies indicate BP-2 potential binding affinity for the Estrogen receptor alpha ligand binding domain (ERα LBD). These results suggest that CYPs effects may result in significant toxicity in the zebrafish. Our study highlights the importance of studying biomarkers in aquatic organisms to assess xenobiotic exposure and the potential toxicity of UV filters to humans.</p></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV filter benzophenone-2: Effects on zebrafish (Danio rerio) cytochrome P450\",\"authors\":\"Ileska M. Casiano-Muñiz,&nbsp;Melissa I. Ortiz-Román,&nbsp;José A. Carmona-Negrón,&nbsp;Félix R. Román-Velázquez\",\"doi\":\"10.1016/j.aquatox.2024.106973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Benzophenone-2 (2,2′, 4,4′- Tetrahydroxybenzophenone; BP-2) is widely used as a sunscreen in Personal and Care Products (PCPs) for protection against ultraviolet (UV) radiation. The effects of BP-2 on random-sex adult zebrafish (<em>Danio rerio)</em> cytochrome P450 (CYP450) were studied. The main goal was to investigate the detoxification mechanisms underlying the adverse consequences of exposure to xenobiotic chemicals such as BP-2. Total protein content, CYP450 content, and erythromycin N-demethylase (ERND) activity were evaluated as indicators of protein CYP3A expression. Five sets of pooled random-sex adult zebrafish were exposed to 0.0, 0.1, 5.0, and 10.0 mg/L of BP-2 to evaluate their acute and chronic toxicity (4 and 15 days, respectively). ERND activity was significantly increased in the chronic toxicity group compared to that in the control group, whereas CYP450 remained unchanged. The results suggest a sufficiently fast catalytic process that does not alter the total CYP450 content. It implies a mediation of CYP450 3A induction by BP-2 and the pregnane X receptor ligand-binding domain (PXR LBD) interaction. Ligand-protein interactions were confirmed via <em>in silico</em> docking with AutoDock Vina. Further computational studies indicate BP-2 potential binding affinity for the Estrogen receptor alpha ligand binding domain (ERα LBD). These results suggest that CYPs effects may result in significant toxicity in the zebrafish. Our study highlights the importance of studying biomarkers in aquatic organisms to assess xenobiotic exposure and the potential toxicity of UV filters to humans.</p></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24001437\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24001437","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二苯甲酮-2(2,2′, 4,4′- Tetrahydroxybenzophenone;BP-2)被广泛用作个人护理产品(PCPs)中的防晒剂,以抵御紫外线(UV)辐射。研究了 BP-2 对随机性别的成年斑马鱼(Danio rerio)细胞色素 P450(CYP450)的影响。主要目的是研究暴露于 BP-2 等异生物化学品所产生不良后果的解毒机制。总蛋白含量、CYP450含量和红霉素N-脱甲基酶(ERND)活性被作为蛋白质CYP3A表达的指标进行评估。将五组随机性别的成年斑马鱼分别暴露于 0.0、0.1、5.0 和 10.0 mg/L 的 BP-2 中,以评估其急性和慢性毒性(分别为 4 天和 15 天)。与对照组相比,慢性毒性组的 ERND 活性明显增加,而 CYP450 则保持不变。结果表明,催化过程足够快,不会改变 CYP450 的总含量。这意味着 BP-2 和孕烷 X 受体配体结合域(PXR LBD)相互作用对 CYP450 3A 的诱导起着中介作用。配体与蛋白质之间的相互作用是通过 AutoDock Vina 进行硅对接确认的。进一步的计算研究表明,BP-2 与雌激素受体α配体结合域(ERα LBD)具有潜在的结合亲和力。这些结果表明,CYPs 的影响可能会导致斑马鱼产生严重的毒性。我们的研究强调了研究水生生物中的生物标志物对评估异生物暴露和紫外线过滤器对人类的潜在毒性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UV filter benzophenone-2: Effects on zebrafish (Danio rerio) cytochrome P450

Benzophenone-2 (2,2′, 4,4′- Tetrahydroxybenzophenone; BP-2) is widely used as a sunscreen in Personal and Care Products (PCPs) for protection against ultraviolet (UV) radiation. The effects of BP-2 on random-sex adult zebrafish (Danio rerio) cytochrome P450 (CYP450) were studied. The main goal was to investigate the detoxification mechanisms underlying the adverse consequences of exposure to xenobiotic chemicals such as BP-2. Total protein content, CYP450 content, and erythromycin N-demethylase (ERND) activity were evaluated as indicators of protein CYP3A expression. Five sets of pooled random-sex adult zebrafish were exposed to 0.0, 0.1, 5.0, and 10.0 mg/L of BP-2 to evaluate their acute and chronic toxicity (4 and 15 days, respectively). ERND activity was significantly increased in the chronic toxicity group compared to that in the control group, whereas CYP450 remained unchanged. The results suggest a sufficiently fast catalytic process that does not alter the total CYP450 content. It implies a mediation of CYP450 3A induction by BP-2 and the pregnane X receptor ligand-binding domain (PXR LBD) interaction. Ligand-protein interactions were confirmed via in silico docking with AutoDock Vina. Further computational studies indicate BP-2 potential binding affinity for the Estrogen receptor alpha ligand binding domain (ERα LBD). These results suggest that CYPs effects may result in significant toxicity in the zebrafish. Our study highlights the importance of studying biomarkers in aquatic organisms to assess xenobiotic exposure and the potential toxicity of UV filters to humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
A proof-of-concept multi-tiered Bayesian approach for the integration of physiochemical properties and toxicokinetic time-course data for Daphnia magna Protective role of melatonin against radiation-induced disruptions in behavior rhythm of zebrafish (danio rerio) The long-term effects of norgestrel on the reproductive and thyroid systems in adult zebrafish at environmentally relevant concentrations Fate and effects of an environmentally relevant mixture of microplastics in simple freshwater microcosms The evaluations of oxidative stress and neurotoxicity in threatened endemic fish Barbus meridionalis from Osor River (Spain)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1