基于深度暹罗域自适应卷积神经网络的四元数分数阶梅克斯纳矩大数据分析方法,用于增强云数据安全性。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-06-11 DOI:10.1080/0954898X.2024.2354477
J Sulthan Alikhan, S Miruna Joe Amali, R Karthick
{"title":"基于深度暹罗域自适应卷积神经网络的四元数分数阶梅克斯纳矩大数据分析方法,用于增强云数据安全性。","authors":"J Sulthan Alikhan, S Miruna Joe Amali, R Karthick","doi":"10.1080/0954898X.2024.2354477","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, Quaternion Fractional Order Meixner Moments-based Deep Siamese Domain Adaptation Convolutional Neural Network-based Big Data Analytical Technique is proposed for improving Cloud Data Security (DSDA-CNN-QFOMM-BD-CDS). The proposed methodology comprises six phases: data collection, transmission, pre-processing, storage, analysis, and security of data. Big data analysis methodologies start with the data collection phase. Deep Siamese domain adaptation convolutional Neural Network (DSDA-CNN) is applied to categorize the types of attacks in the cloud database during the data analysis process. During data security phase, Quaternion Fractional Order Meixner Moments (QFOMM) is employed to protect the cloud data for encryption with decryption. The proposed method is implemented in JAVA and assessed using performance metrics, including precision, sensitivity, accuracy, recall, specificity, f-measure, computational complexity information loss, compression ratio, throughput, encryption time, decryption time. The performance of the proposed method offers 23.31%, 15.64%, 18.89% better accuracy and 36.69%, 17.25%, 19.96% less information loss. When compared to existing methods like Fractional order discrete Tchebyshev encryption fostered big data analytical model to maximize the safety of cloud data depend on Enhanced Elman spike neural network (EESNN-FrDTM-BD-CDS), an innovative scheme architecture for safe authentication along data sharing in cloud enabled Big data Environment (LZMA-DBSCAN-BD-CDS).</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Siamese domain adaptation convolutional neural network-based quaternion fractional order Meixner moments fostered big data analytical method for enhancing cloud data security.\",\"authors\":\"J Sulthan Alikhan, S Miruna Joe Amali, R Karthick\",\"doi\":\"10.1080/0954898X.2024.2354477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, Quaternion Fractional Order Meixner Moments-based Deep Siamese Domain Adaptation Convolutional Neural Network-based Big Data Analytical Technique is proposed for improving Cloud Data Security (DSDA-CNN-QFOMM-BD-CDS). The proposed methodology comprises six phases: data collection, transmission, pre-processing, storage, analysis, and security of data. Big data analysis methodologies start with the data collection phase. Deep Siamese domain adaptation convolutional Neural Network (DSDA-CNN) is applied to categorize the types of attacks in the cloud database during the data analysis process. During data security phase, Quaternion Fractional Order Meixner Moments (QFOMM) is employed to protect the cloud data for encryption with decryption. The proposed method is implemented in JAVA and assessed using performance metrics, including precision, sensitivity, accuracy, recall, specificity, f-measure, computational complexity information loss, compression ratio, throughput, encryption time, decryption time. The performance of the proposed method offers 23.31%, 15.64%, 18.89% better accuracy and 36.69%, 17.25%, 19.96% less information loss. When compared to existing methods like Fractional order discrete Tchebyshev encryption fostered big data analytical model to maximize the safety of cloud data depend on Enhanced Elman spike neural network (EESNN-FrDTM-BD-CDS), an innovative scheme architecture for safe authentication along data sharing in cloud enabled Big data Environment (LZMA-DBSCAN-BD-CDS).</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-28\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2354477\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2354477","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于四元数分数阶 Meixner 矩的深度暹罗域自适应卷积神经网络大数据分析技术(DSDA-CNN-QFOMM-BD-CDS),以提高云数据的安全性。所提出的方法包括六个阶段:数据收集、传输、预处理、存储、分析和数据安全。大数据分析方法从数据收集阶段开始。在数据分析过程中,应用深度连体域自适应卷积神经网络(DSDA-CNN)对云数据库中的攻击类型进行分类。在数据安全阶段,采用四元数分数阶美克斯纳矩(QFOMM)对云数据进行加密和解密保护。所提出的方法在 JAVA 中实现,并使用性能指标进行评估,包括精确度、灵敏度、准确度、召回率、特异性、f-度量、计算复杂度信息损失、压缩比、吞吐量、加密时间、解密时间。所提方法的准确度分别提高了 23.31%、15.64% 和 18.89%,信息损失分别减少了 36.69%、17.25% 和 19.96%。与分数阶离散切比雪夫加密等现有方法相比,该方法基于增强型埃尔曼穗神经网络(EESNN-FrDTM-BD-CDS)建立了大数据分析模型,最大限度地提高了云数据的安全性;该方法是一种创新的方案架构,可在启用云的大数据环境(LZMA-DBSCAN-BD-CDS)中实现数据共享的安全认证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Siamese domain adaptation convolutional neural network-based quaternion fractional order Meixner moments fostered big data analytical method for enhancing cloud data security.

In this paper, Quaternion Fractional Order Meixner Moments-based Deep Siamese Domain Adaptation Convolutional Neural Network-based Big Data Analytical Technique is proposed for improving Cloud Data Security (DSDA-CNN-QFOMM-BD-CDS). The proposed methodology comprises six phases: data collection, transmission, pre-processing, storage, analysis, and security of data. Big data analysis methodologies start with the data collection phase. Deep Siamese domain adaptation convolutional Neural Network (DSDA-CNN) is applied to categorize the types of attacks in the cloud database during the data analysis process. During data security phase, Quaternion Fractional Order Meixner Moments (QFOMM) is employed to protect the cloud data for encryption with decryption. The proposed method is implemented in JAVA and assessed using performance metrics, including precision, sensitivity, accuracy, recall, specificity, f-measure, computational complexity information loss, compression ratio, throughput, encryption time, decryption time. The performance of the proposed method offers 23.31%, 15.64%, 18.89% better accuracy and 36.69%, 17.25%, 19.96% less information loss. When compared to existing methods like Fractional order discrete Tchebyshev encryption fostered big data analytical model to maximize the safety of cloud data depend on Enhanced Elman spike neural network (EESNN-FrDTM-BD-CDS), an innovative scheme architecture for safe authentication along data sharing in cloud enabled Big data Environment (LZMA-DBSCAN-BD-CDS).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Optimizing tomato detection and counting in smart greenhouses: A lightweight YOLOv8 model incorporating high- and low-frequency feature transformer structures. HCAR-AM ground nut leaf net: Hybrid convolution-based adaptive ResNet with attention mechanism for detecting ground nut leaf diseases with adaptive segmentation. Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection. Can human brain connectivity explain verbal working memory? Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1