焦谷醇对鲶鱼的神经毒性和心脏毒性作用

IF 4.2 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environmental toxicology and pharmacology Pub Date : 2024-06-08 DOI:10.1016/j.etap.2024.104481
Mohamed Hamed , Christopher J. Martyniuk , Hamdy A.M. Soliman , Alaa G.M. Osman , Rashad E.M. Said
{"title":"焦谷醇对鲶鱼的神经毒性和心脏毒性作用","authors":"Mohamed Hamed ,&nbsp;Christopher J. Martyniuk ,&nbsp;Hamdy A.M. Soliman ,&nbsp;Alaa G.M. Osman ,&nbsp;Rashad E.M. Said","doi":"10.1016/j.etap.2024.104481","DOIUrl":null,"url":null,"abstract":"<div><p>Pyrogallol, a botanical hydrolysable tannin, has diverse medical and industrial applications. Its impact on aquatic ecosystems and fish health has been previously studied, revealing histopathological, immunological, biochemical, and haematological alterations in African catfish (<em>Clarias gariepinus</em>). In this study, the neurotoxic potential of pyrogallol was assessed through a 15-day exposure of catfish to concentrations of 1, 5, or 10 mg/L. Enzyme activities such as acetylcholinesterase (AchE), monoamine oxidase (MAO), aldehyde oxidase (AO), and nitric oxide (NO) were measured in serum and brain, along with histopathological examinations in the brain and heart. Pyrogallol exposure led to decreased AchE activity in the brain and serum, increased serum MAO activity, elevated AO in both brain and serum, and suppressed NO levels. Morphological abnormalities and dose-dependent pathological alterations were observed in the brain and heart, including neuropile deformities, shrunken Purkinje cells, cardiomyocyte degeneration, and increased collagen fibers. This suggests that pyrogallol induces adverse effects in fish.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"109 ","pages":"Article 104481"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurotoxic and cardiotoxic effects of pyrogallol on catfish (Clarias gariepinus)\",\"authors\":\"Mohamed Hamed ,&nbsp;Christopher J. Martyniuk ,&nbsp;Hamdy A.M. Soliman ,&nbsp;Alaa G.M. Osman ,&nbsp;Rashad E.M. Said\",\"doi\":\"10.1016/j.etap.2024.104481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pyrogallol, a botanical hydrolysable tannin, has diverse medical and industrial applications. Its impact on aquatic ecosystems and fish health has been previously studied, revealing histopathological, immunological, biochemical, and haematological alterations in African catfish (<em>Clarias gariepinus</em>). In this study, the neurotoxic potential of pyrogallol was assessed through a 15-day exposure of catfish to concentrations of 1, 5, or 10 mg/L. Enzyme activities such as acetylcholinesterase (AchE), monoamine oxidase (MAO), aldehyde oxidase (AO), and nitric oxide (NO) were measured in serum and brain, along with histopathological examinations in the brain and heart. Pyrogallol exposure led to decreased AchE activity in the brain and serum, increased serum MAO activity, elevated AO in both brain and serum, and suppressed NO levels. Morphological abnormalities and dose-dependent pathological alterations were observed in the brain and heart, including neuropile deformities, shrunken Purkinje cells, cardiomyocyte degeneration, and increased collagen fibers. This suggests that pyrogallol induces adverse effects in fish.</p></div>\",\"PeriodicalId\":11775,\"journal\":{\"name\":\"Environmental toxicology and pharmacology\",\"volume\":\"109 \",\"pages\":\"Article 104481\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental toxicology and pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001212\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924001212","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

焦酚是一种植物水解单宁,具有多种医疗和工业用途。以前曾研究过它对水生生态系统和鱼类健康的影响,发现它对非洲鲶鱼(Clarias gariepinus)造成了组织病理学、免疫学、生物化学和血液学方面的改变。在本研究中,通过让鲶鱼暴露于 1、5 或 10 毫克/升的浓度下 15 天,对焦棓酚的神经毒性潜力进行了评估。测量了血清和大脑中乙酰胆碱酯酶(AchE)、单胺氧化酶(MAO)、醛氧化酶(AO)和一氧化氮(NO)等酶的活性,并对大脑和心脏进行了组织病理学检查。接触焦谷醇会导致大脑和血清中 AchE 活性降低、血清 MAO 活性升高、大脑和血清中 AO 升高以及 NO 水平降低。在大脑和心脏中观察到了形态异常和剂量依赖性病理变化,包括神经瘫痪、浦肯野细胞萎缩、心肌细胞变性和胶原纤维增加。这表明焦谷醇会对鱼类产生不良影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neurotoxic and cardiotoxic effects of pyrogallol on catfish (Clarias gariepinus)

Pyrogallol, a botanical hydrolysable tannin, has diverse medical and industrial applications. Its impact on aquatic ecosystems and fish health has been previously studied, revealing histopathological, immunological, biochemical, and haematological alterations in African catfish (Clarias gariepinus). In this study, the neurotoxic potential of pyrogallol was assessed through a 15-day exposure of catfish to concentrations of 1, 5, or 10 mg/L. Enzyme activities such as acetylcholinesterase (AchE), monoamine oxidase (MAO), aldehyde oxidase (AO), and nitric oxide (NO) were measured in serum and brain, along with histopathological examinations in the brain and heart. Pyrogallol exposure led to decreased AchE activity in the brain and serum, increased serum MAO activity, elevated AO in both brain and serum, and suppressed NO levels. Morphological abnormalities and dose-dependent pathological alterations were observed in the brain and heart, including neuropile deformities, shrunken Purkinje cells, cardiomyocyte degeneration, and increased collagen fibers. This suggests that pyrogallol induces adverse effects in fish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
4.70%
发文量
185
审稿时长
34 days
期刊介绍: Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man. Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals. In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.
期刊最新文献
Effect of an insecticide, fungicide and plant growth regulator and their mixture on the survival of the springtail Folsomia candida and the potential reduction of toxicity by vitamins Spray paint-derived microplastics and incorporated substances as ecotoxicological contaminants in the neotropical bumblebee Bombus atratus Pollen contaminated with a triple-action fungicide induced oxidative stress and reduced longevity though with less impact on lifespan in honey bees from well fed colonies Constructing an adverse outcome pathway framework for the impact of maternal exposure to PM2.5 on liver development and injury in offspring Microplastic contamination in the aquaculture icon Oreochromis mossambicus: Prevalence, characteristics, and comprehensive overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1