Sohaib Shujaat, Abdulmohsen Alfadley, Nermin Morgan, Ahmed Jamleh, Marryam Riaz, Ali Anwar Aboalela, Reinhilde Jacobs
{"title":"用于自动完成锥形束计算机断层扫描上颌窦成像任务的人工智能的兴起。系统综述。","authors":"Sohaib Shujaat, Abdulmohsen Alfadley, Nermin Morgan, Ahmed Jamleh, Marryam Riaz, Ali Anwar Aboalela, Reinhilde Jacobs","doi":"10.1111/cid.13352","DOIUrl":null,"url":null,"abstract":"<p>Cone-beam computed tomography (CBCT) imaging of the maxillary sinus is indispensable for implantologists, offering three-dimensional anatomical visualization, morphological variation detection, and abnormality identification, all critical for diagnostics and treatment planning in digital implant workflows. The following systematic review presented the current evidence pertaining to the use of artificial intelligence (AI) for CBCT-derived maxillary sinus imaging tasks. An electronic search was conducted on PubMed, Web of Science, and Cochrane up until January 2024. Based on the eligibility criteria, 14 articles were included that reported on the use of AI for the automation of CBCT-derived maxillary sinus assessment tasks. The QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool was used to evaluate the risk of bias and applicability concerns. The AI models used were designed to automate tasks such as segmentation, classification, and prediction. Most studies related to automated maxillary sinus segmentation demonstrated high performance. In terms of classification tasks, the highest accuracy was observed for diagnosing sinusitis (99.7%), whereas the lowest accuracy was detected for classifying abnormalities such as fungal balls and chronic rhinosinusitis (83.0%). Regarding implant treatment planning, the classification of automated surgical plans for maxillary sinus floor augmentation based on residual bone height showed high accuracy (97%). Additionally, AI demonstrated high performance in predicting gender and sinus volume. In conclusion, although AI shows promising potential in automating maxillary sinus imaging tasks which could be useful for diagnostic and planning tasks in implantology, there is a need for more diverse datasets to improve the generalizability and clinical relevance of AI models. Future studies are suggested to focus on expanding the datasets, making the AI model's source available, and adhering to standardized AI reporting guidelines.</p>","PeriodicalId":50679,"journal":{"name":"Clinical Implant Dentistry and Related Research","volume":"26 5","pages":"899-912"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cid.13352","citationCount":"0","resultStr":"{\"title\":\"Emergence of artificial intelligence for automating cone-beam computed tomography-derived maxillary sinus imaging tasks. A systematic review\",\"authors\":\"Sohaib Shujaat, Abdulmohsen Alfadley, Nermin Morgan, Ahmed Jamleh, Marryam Riaz, Ali Anwar Aboalela, Reinhilde Jacobs\",\"doi\":\"10.1111/cid.13352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cone-beam computed tomography (CBCT) imaging of the maxillary sinus is indispensable for implantologists, offering three-dimensional anatomical visualization, morphological variation detection, and abnormality identification, all critical for diagnostics and treatment planning in digital implant workflows. The following systematic review presented the current evidence pertaining to the use of artificial intelligence (AI) for CBCT-derived maxillary sinus imaging tasks. An electronic search was conducted on PubMed, Web of Science, and Cochrane up until January 2024. Based on the eligibility criteria, 14 articles were included that reported on the use of AI for the automation of CBCT-derived maxillary sinus assessment tasks. The QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool was used to evaluate the risk of bias and applicability concerns. The AI models used were designed to automate tasks such as segmentation, classification, and prediction. Most studies related to automated maxillary sinus segmentation demonstrated high performance. In terms of classification tasks, the highest accuracy was observed for diagnosing sinusitis (99.7%), whereas the lowest accuracy was detected for classifying abnormalities such as fungal balls and chronic rhinosinusitis (83.0%). Regarding implant treatment planning, the classification of automated surgical plans for maxillary sinus floor augmentation based on residual bone height showed high accuracy (97%). Additionally, AI demonstrated high performance in predicting gender and sinus volume. In conclusion, although AI shows promising potential in automating maxillary sinus imaging tasks which could be useful for diagnostic and planning tasks in implantology, there is a need for more diverse datasets to improve the generalizability and clinical relevance of AI models. Future studies are suggested to focus on expanding the datasets, making the AI model's source available, and adhering to standardized AI reporting guidelines.</p>\",\"PeriodicalId\":50679,\"journal\":{\"name\":\"Clinical Implant Dentistry and Related Research\",\"volume\":\"26 5\",\"pages\":\"899-912\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cid.13352\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Implant Dentistry and Related Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cid.13352\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Implant Dentistry and Related Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cid.13352","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Emergence of artificial intelligence for automating cone-beam computed tomography-derived maxillary sinus imaging tasks. A systematic review
Cone-beam computed tomography (CBCT) imaging of the maxillary sinus is indispensable for implantologists, offering three-dimensional anatomical visualization, morphological variation detection, and abnormality identification, all critical for diagnostics and treatment planning in digital implant workflows. The following systematic review presented the current evidence pertaining to the use of artificial intelligence (AI) for CBCT-derived maxillary sinus imaging tasks. An electronic search was conducted on PubMed, Web of Science, and Cochrane up until January 2024. Based on the eligibility criteria, 14 articles were included that reported on the use of AI for the automation of CBCT-derived maxillary sinus assessment tasks. The QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool was used to evaluate the risk of bias and applicability concerns. The AI models used were designed to automate tasks such as segmentation, classification, and prediction. Most studies related to automated maxillary sinus segmentation demonstrated high performance. In terms of classification tasks, the highest accuracy was observed for diagnosing sinusitis (99.7%), whereas the lowest accuracy was detected for classifying abnormalities such as fungal balls and chronic rhinosinusitis (83.0%). Regarding implant treatment planning, the classification of automated surgical plans for maxillary sinus floor augmentation based on residual bone height showed high accuracy (97%). Additionally, AI demonstrated high performance in predicting gender and sinus volume. In conclusion, although AI shows promising potential in automating maxillary sinus imaging tasks which could be useful for diagnostic and planning tasks in implantology, there is a need for more diverse datasets to improve the generalizability and clinical relevance of AI models. Future studies are suggested to focus on expanding the datasets, making the AI model's source available, and adhering to standardized AI reporting guidelines.
期刊介绍:
The goal of Clinical Implant Dentistry and Related Research is to advance the scientific and technical aspects relating to dental implants and related scientific subjects. Dissemination of new and evolving information related to dental implants and the related science is the primary goal of our journal.
The range of topics covered by the journals will include but be not limited to:
New scientific developments relating to bone
Implant surfaces and their relationship to the surrounding tissues
Computer aided implant designs
Computer aided prosthetic designs
Immediate implant loading
Immediate implant placement
Materials relating to bone induction and conduction
New surgical methods relating to implant placement
New materials and methods relating to implant restorations
Methods for determining implant stability
A primary focus of the journal is publication of evidenced based articles evaluating to new dental implants, techniques and multicenter studies evaluating these treatments. In addition basic science research relating to wound healing and osseointegration will be an important focus for the journal.