关于线性回归中脊惩罚的估计:模拟与应用

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Kuwait Journal of Science Pub Date : 2024-06-06 DOI:10.1016/j.kjs.2024.100273
Muhammad Shakir Khan , Amjad Ali , Muhammad Suhail , Eid Sadun Alotaibi , Nahaa Eid Alsubaie
{"title":"关于线性回归中脊惩罚的估计:模拟与应用","authors":"Muhammad Shakir Khan ,&nbsp;Amjad Ali ,&nbsp;Muhammad Suhail ,&nbsp;Eid Sadun Alotaibi ,&nbsp;Nahaa Eid Alsubaie","doi":"10.1016/j.kjs.2024.100273","DOIUrl":null,"url":null,"abstract":"<div><p>According to existing literature, the ordinary least squares (OLS) estimators are not the best in presence of multicollinearity. The inability of OLS estimators against multicollinearity has paved the way for the development of various ridge type estimators for circumventing the problem of multicollinearity. In this paper improved two-parameter ridge (ITPR) estimators are proposed. A simulation study is used to evaluate the performance of proposed estimators based on minimum mean squared error (MSE) criterion. The simulative results reveal that, based on minimum MSE, ITPR2 was the most efficient estimator compared to the considered estimators in the study. Finally, a real-life dataset is analyzed to demonstrate the applications of the proposed estimators and also checked their efficacy for mitigation of multicollinearity.</p></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"51 4","pages":"Article 100273"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307410824000981/pdfft?md5=c29d7ee62440e157955f85400deb96fb&pid=1-s2.0-S2307410824000981-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the estimation of ridge penalty in linear regression: Simulation and application\",\"authors\":\"Muhammad Shakir Khan ,&nbsp;Amjad Ali ,&nbsp;Muhammad Suhail ,&nbsp;Eid Sadun Alotaibi ,&nbsp;Nahaa Eid Alsubaie\",\"doi\":\"10.1016/j.kjs.2024.100273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>According to existing literature, the ordinary least squares (OLS) estimators are not the best in presence of multicollinearity. The inability of OLS estimators against multicollinearity has paved the way for the development of various ridge type estimators for circumventing the problem of multicollinearity. In this paper improved two-parameter ridge (ITPR) estimators are proposed. A simulation study is used to evaluate the performance of proposed estimators based on minimum mean squared error (MSE) criterion. The simulative results reveal that, based on minimum MSE, ITPR2 was the most efficient estimator compared to the considered estimators in the study. Finally, a real-life dataset is analyzed to demonstrate the applications of the proposed estimators and also checked their efficacy for mitigation of multicollinearity.</p></div>\",\"PeriodicalId\":17848,\"journal\":{\"name\":\"Kuwait Journal of Science\",\"volume\":\"51 4\",\"pages\":\"Article 100273\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2307410824000981/pdfft?md5=c29d7ee62440e157955f85400deb96fb&pid=1-s2.0-S2307410824000981-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307410824000981\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410824000981","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

根据现有文献,在存在多重共线性的情况下,普通最小二乘法(OLS)估计器并非最佳估计器。OLS 估计器无法解决多重共线性问题,这为开发各种脊型估计器来规避多重共线性问题铺平了道路。本文提出了改进的双参数脊(ITPR)估计器。模拟研究根据最小均方误差(MSE)标准来评估所提出的估计器的性能。模拟结果表明,根据最小均方误差标准,ITPR2 与研究中考虑的估计器相比是最有效的估计器。最后,分析了一个真实数据集,以展示所提出的估计器的应用,并检验其在缓解多重共线性方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the estimation of ridge penalty in linear regression: Simulation and application

According to existing literature, the ordinary least squares (OLS) estimators are not the best in presence of multicollinearity. The inability of OLS estimators against multicollinearity has paved the way for the development of various ridge type estimators for circumventing the problem of multicollinearity. In this paper improved two-parameter ridge (ITPR) estimators are proposed. A simulation study is used to evaluate the performance of proposed estimators based on minimum mean squared error (MSE) criterion. The simulative results reveal that, based on minimum MSE, ITPR2 was the most efficient estimator compared to the considered estimators in the study. Finally, a real-life dataset is analyzed to demonstrate the applications of the proposed estimators and also checked their efficacy for mitigation of multicollinearity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
期刊最新文献
Identification of Gold targets using airborne geophysics and remote sensing data in part of northcentral Nigeria Optimization of fermentation conditions for 3-methylthio-1-propanol production by Saccharomycopsis fibuligera Y1402 in tobacco matrix Bayesian estimation strategy for multi-component geometric life testing model under doubly type-1 censoring scheme In silico analysis of point mutation (c.687dupC; p. Met230Hisfs∗6) in PGAM2 gene that causes Glycogen Storage Disease (GSD) Type X Innovative synthesis and performance enhancement of yttria-stabilized zirconia nanocrystals via hydrothermal method with Uncaria gambir Roxb. leaf extract as a capping agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1