{"title":"无颌脊椎动物在三次大灭绝中的海底定殖。","authors":"Chase Doran Brownstein, Thomas J Near","doi":"10.1186/s12862-024-02253-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The deep (> 200 m) ocean floor is often considered to be a refugium of biodiversity; many benthic marine animals appear to share ancient common ancestry with nearshore and terrestrial relatives. Whether this pattern holds for vertebrates is obscured by a poor understanding of the evolutionary history of the oldest marine vertebrate clades. Hagfishes are jawless vertebrates that are either the living sister to all vertebrates or form a clade with lampreys, the only other surviving jawless fishes.</p><p><strong>Results: </strong>We use the hagfish fossil record and molecular data for all recognized genera to construct a novel hypothesis for hagfish relationships and diversification. We find that crown hagfishes persisted through three mass extinctions after appearing in the Permian ~ 275 Ma, making them one of the oldest living vertebrate lineages. In contrast to most other deep marine vertebrates, we consistently infer a deep origin of continental slope occupation by hagfishes that dates to the Paleozoic. Yet, we show that hagfishes have experienced marked body size diversification over the last hundred million years, contrasting with a view of this clade as morphologically stagnant.</p><p><strong>Conclusion: </strong>Our results establish hagfishes as ancient members of demersal continental slope faunas and suggest a prolonged accumulation of deep sea jawless vertebrate biodiversity.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"24 1","pages":"79"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Colonization of the ocean floor by jawless vertebrates across three mass extinctions.\",\"authors\":\"Chase Doran Brownstein, Thomas J Near\",\"doi\":\"10.1186/s12862-024-02253-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The deep (> 200 m) ocean floor is often considered to be a refugium of biodiversity; many benthic marine animals appear to share ancient common ancestry with nearshore and terrestrial relatives. Whether this pattern holds for vertebrates is obscured by a poor understanding of the evolutionary history of the oldest marine vertebrate clades. Hagfishes are jawless vertebrates that are either the living sister to all vertebrates or form a clade with lampreys, the only other surviving jawless fishes.</p><p><strong>Results: </strong>We use the hagfish fossil record and molecular data for all recognized genera to construct a novel hypothesis for hagfish relationships and diversification. We find that crown hagfishes persisted through three mass extinctions after appearing in the Permian ~ 275 Ma, making them one of the oldest living vertebrate lineages. In contrast to most other deep marine vertebrates, we consistently infer a deep origin of continental slope occupation by hagfishes that dates to the Paleozoic. Yet, we show that hagfishes have experienced marked body size diversification over the last hundred million years, contrasting with a view of this clade as morphologically stagnant.</p><p><strong>Conclusion: </strong>Our results establish hagfishes as ancient members of demersal continental slope faunas and suggest a prolonged accumulation of deep sea jawless vertebrate biodiversity.</p>\",\"PeriodicalId\":93910,\"journal\":{\"name\":\"BMC ecology and evolution\",\"volume\":\"24 1\",\"pages\":\"79\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC ecology and evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12862-024-02253-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-024-02253-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Colonization of the ocean floor by jawless vertebrates across three mass extinctions.
Background: The deep (> 200 m) ocean floor is often considered to be a refugium of biodiversity; many benthic marine animals appear to share ancient common ancestry with nearshore and terrestrial relatives. Whether this pattern holds for vertebrates is obscured by a poor understanding of the evolutionary history of the oldest marine vertebrate clades. Hagfishes are jawless vertebrates that are either the living sister to all vertebrates or form a clade with lampreys, the only other surviving jawless fishes.
Results: We use the hagfish fossil record and molecular data for all recognized genera to construct a novel hypothesis for hagfish relationships and diversification. We find that crown hagfishes persisted through three mass extinctions after appearing in the Permian ~ 275 Ma, making them one of the oldest living vertebrate lineages. In contrast to most other deep marine vertebrates, we consistently infer a deep origin of continental slope occupation by hagfishes that dates to the Paleozoic. Yet, we show that hagfishes have experienced marked body size diversification over the last hundred million years, contrasting with a view of this clade as morphologically stagnant.
Conclusion: Our results establish hagfishes as ancient members of demersal continental slope faunas and suggest a prolonged accumulation of deep sea jawless vertebrate biodiversity.