{"title":"采用亚阈值摆动隧道场效应晶体管的纳米生物传感器:前沿综述","authors":"M. Poorna Sundari , G. Lakshmi Priya","doi":"10.1016/j.sbsr.2024.100665","DOIUrl":null,"url":null,"abstract":"<div><p>A thorough investigation into the development and performance assessment of biosensors that utilize Tunnel Field Effect Transistors (TFETs), showcasing a departure from conventional bio-sensing approaches is carried out. The unique properties of TFETs leverage quantum tunneling effects to enable precise and efficient detection of biomolecules. This review examines the impact of various device schematic modifications on the sensitivity of TFET biosensors. The analysis focuses on methodologies aimed at improving sensitivity levels, exploring models from scholarly literature, and assessing shifts in simulated parameters. Such as ON current (I<sub>ON</sub>), Subthreshold Swing (SS), OFF current (I<sub>OFF</sub>), ON-OFF current ratio (I<sub>ON</sub>/I<sub>OFF</sub>), threshold voltage (V<sub>th</sub>), sensitivity, and selectivity. Among different architectures reported in the work, Heterojunction Tunneling Field Effect Transistor (HJ-TFET)-based biosensors offer significant advancements in biosensing technology due to their ability to control tunneling rates through versatile bandgap materials. Vertical TFET (VTFET) biosensors also demonstrate promising potential for label-free and specific biomolecule detection, leveraging vertical architectures for enhanced electrostatic control and scalability. Incorporating negative capacitance effects through ferroelectric materials further improves the VTFET performance, with ultra-low subthreshold swing and high sensitivity. Through the exploration of the latest advancements and applications, we illustrate how these nano-enabled gateways to health are opening up new possibilities for rapid, on-site medical diagnostics, ultimately bringing cutting-edge healthcare solutions. By drawing comparisons with established biosensing methods, TFET-based biosensors show immense promise in transforming medical diagnostics and point-of-care applications, offering high sensitivity which is crucial for precise monitoring in various fields such as medical diagnostics, environmental monitoring, and food safety.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100665"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000473/pdfft?md5=7967d1207f690f92f3243e2e0ec5268f&pid=1-s2.0-S2214180424000473-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nano-biosensors with subthreshold swing tunnel field effect transistor: A cutting-edge review\",\"authors\":\"M. Poorna Sundari , G. Lakshmi Priya\",\"doi\":\"10.1016/j.sbsr.2024.100665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A thorough investigation into the development and performance assessment of biosensors that utilize Tunnel Field Effect Transistors (TFETs), showcasing a departure from conventional bio-sensing approaches is carried out. The unique properties of TFETs leverage quantum tunneling effects to enable precise and efficient detection of biomolecules. This review examines the impact of various device schematic modifications on the sensitivity of TFET biosensors. The analysis focuses on methodologies aimed at improving sensitivity levels, exploring models from scholarly literature, and assessing shifts in simulated parameters. Such as ON current (I<sub>ON</sub>), Subthreshold Swing (SS), OFF current (I<sub>OFF</sub>), ON-OFF current ratio (I<sub>ON</sub>/I<sub>OFF</sub>), threshold voltage (V<sub>th</sub>), sensitivity, and selectivity. Among different architectures reported in the work, Heterojunction Tunneling Field Effect Transistor (HJ-TFET)-based biosensors offer significant advancements in biosensing technology due to their ability to control tunneling rates through versatile bandgap materials. Vertical TFET (VTFET) biosensors also demonstrate promising potential for label-free and specific biomolecule detection, leveraging vertical architectures for enhanced electrostatic control and scalability. Incorporating negative capacitance effects through ferroelectric materials further improves the VTFET performance, with ultra-low subthreshold swing and high sensitivity. Through the exploration of the latest advancements and applications, we illustrate how these nano-enabled gateways to health are opening up new possibilities for rapid, on-site medical diagnostics, ultimately bringing cutting-edge healthcare solutions. By drawing comparisons with established biosensing methods, TFET-based biosensors show immense promise in transforming medical diagnostics and point-of-care applications, offering high sensitivity which is crucial for precise monitoring in various fields such as medical diagnostics, environmental monitoring, and food safety.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"44 \",\"pages\":\"Article 100665\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000473/pdfft?md5=7967d1207f690f92f3243e2e0ec5268f&pid=1-s2.0-S2214180424000473-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Nano-biosensors with subthreshold swing tunnel field effect transistor: A cutting-edge review
A thorough investigation into the development and performance assessment of biosensors that utilize Tunnel Field Effect Transistors (TFETs), showcasing a departure from conventional bio-sensing approaches is carried out. The unique properties of TFETs leverage quantum tunneling effects to enable precise and efficient detection of biomolecules. This review examines the impact of various device schematic modifications on the sensitivity of TFET biosensors. The analysis focuses on methodologies aimed at improving sensitivity levels, exploring models from scholarly literature, and assessing shifts in simulated parameters. Such as ON current (ION), Subthreshold Swing (SS), OFF current (IOFF), ON-OFF current ratio (ION/IOFF), threshold voltage (Vth), sensitivity, and selectivity. Among different architectures reported in the work, Heterojunction Tunneling Field Effect Transistor (HJ-TFET)-based biosensors offer significant advancements in biosensing technology due to their ability to control tunneling rates through versatile bandgap materials. Vertical TFET (VTFET) biosensors also demonstrate promising potential for label-free and specific biomolecule detection, leveraging vertical architectures for enhanced electrostatic control and scalability. Incorporating negative capacitance effects through ferroelectric materials further improves the VTFET performance, with ultra-low subthreshold swing and high sensitivity. Through the exploration of the latest advancements and applications, we illustrate how these nano-enabled gateways to health are opening up new possibilities for rapid, on-site medical diagnostics, ultimately bringing cutting-edge healthcare solutions. By drawing comparisons with established biosensing methods, TFET-based biosensors show immense promise in transforming medical diagnostics and point-of-care applications, offering high sensitivity which is crucial for precise monitoring in various fields such as medical diagnostics, environmental monitoring, and food safety.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.